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Abstract 

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm 

introduced by William S. Cleveland in 1979.  In 1981 Cleveland made available FORTRAN routines 

LOWESS and LOWEST from the Computing Information Library at Bell Laboratories.  These are 

reproduced in the Appendix.  The routine LOWEST performs a locally weighted least squares linear 

regression on a set of data pairs ( ),
j j
x y  1,2, 3, ,j q= …  where the weights are functions of the distances 

j
r  

from the point to be ‘smoothed’ ( ),s sx y .  The routine returns the estimate 
0 1ŝ s

y xβ β= +  where 
0 1
,β β  are 

the parameters of a line of best fit where the 
j
x  are considered error-free. 

Routine LOWEST uses a clever modification of the usual weighted least squares regression which will be 

explained below. 

Introduction 

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm 

proposed by William S. Cleveland (Cleveland 1979).  For n data pairs ( ),
i i
x y  1,2, ,i n= …  where the x-

values are considered as independent and error-free and the y-values as measurements subject to error, the 

algorithm assumes the n points are ordered from smallest to largest x-value and selects a smoothing point, 

say ( ),
s s
x y  1,2, ,s n= …  and its q nearest neighbours, noting that the smoothing point ( ),

s s
x y  is a 

neighbour of itself.  These q nearest neighbours are a subset of the n data pairs and the algorithm fits a 

polynomial to the subset that is used to calculate the estimate ( )ˆ,
s s
x y  noting that the ‘hat’ symbol ( )^  

denotes an estimate of a quantity.  Cleveland (1979, p. 833) suggests that polynomials of degree 1: 

0 1
y xβ β= +  (a straight line) or degree 2: 2

0 1 2
y x xβ β β= + +  (a quadratic curve) are sufficient for most 

purposes and notes that the polynomial of degree 1 “should almost always provide adequate smoothed points 

and computational ease.”  In this paper we only consider polynomials of degree 1.  Now, since only two 

points are required to define a straight line, and q will always be greater than 2 in practice, least squares is 

used to determine estimates of the parameters of the line of best fit with local weights 0 1
j
w≤ ≤  for 

1,2, ,j q= …  as functions of the distances from the smoothing point ( ),s sx y  to each of the q nearest 

neighbours.  [The weight function most often used in lowess smoothing is known as tricube (more about this 

later) and yields local weights that decrease from 1 at the smoothing point to 0 at the furthest of the q 

points.]  After computing the estimate 
ŝ
y  at the smoothing point from 

0 1ŝ s
y xβ β= +  (using locally 

weighted linear regression) the smoothing point is increased by one, i.e., 1s s= +  and the subset of q 

nearest neighbours determined (which may be the same subset as for the previous smoothing point) and the 

next estimate computed.  This process is repeated until s n=  

Least Squares Linear Regression 

The y-values in the ( ),j jx y  data pairs are assumed to be measurements subject to error and if blunders and 

systematic errors are eliminated, the remaining random errors can be allowed for by the application of small 

corrections known as residuals.  Hence, we write 
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 measurement + residual = best estimate (1) 

Also, a quantity that is being measured has both a true value (forever unknown) and an estimated value (the 

best estimate) and after removing blunders and systematic errors from the measurements leaving only 

random errors of measurements, we may write 

 measurement = true value + random error 

Often, a measurement may be the mean of several measurements or measurements may be obtained from 

different types of equipment or measurement processes and they may be of varying precision.  To allow for 

this we may weight our measurements, where a weight is a numerical value that reflects the degree of 

confidence we have in the measurement.  The greater the weight the more confident we are in the particular 

measurement.  A weight is often defined to be inversely proportional to the variance of a measurement where 

variance is a statistical measure of precision.  Precise measurements have a small variance. 

To solve for the values of the two parameters 0 1
,β β  we write q observation equations having the general 

form of (1) 

 ˆ ˆ    or    
j j j j j j
y v y v y y+ = = −  (2) 

where 
j
v  denotes the residual of the jth point and 

ĵ
y  denotes the best estimate. 

Now the least squares principle is that the best estimates are those that make the sum of the squares of the 

residuals, multiplied by their weights, a minimum.  To achieve this, write the least squares function ϕ  as 

 ( )
22 2 2 2

1 1 2 2
ˆ

n n j j j j j
w v w v w v w v w y yϕ = + + + = = −∑ ∑⋯  

where the following summation notations are equivalent: 
1 2 3

1

q

j j j q

j j

v v v v v v v
=

= = = + + + +∑ ∑ ∑ ⋯   

And since 
0 1ĵ jy xβ β= +  

 ( ) ( )
2

0 1 0 1
,

j j j
w x yϕ ϕ β β β β= = + −∑  

( )0 1
,ϕ β β  will have a minimum value when the partial derivatives 

0 1

,
ϕ ϕ

β β

∂ ∂

∂ ∂
 both equal zero, that is when 

 

( )

( )

0 1

0

0 1

1

2 0

2 0

j j j

j j j j

w x y

w x x y

ϕ
β β

β

ϕ
β β

β

∂
= + − =

∂

∂
= + − =

∂

∑

∑
  (3) 

and cancelling the 2’s in (3) and rearranging gives two normal equations 

 
( ) ( )
( ) ( )

0 1

2
0 1

j j j j j

j j j j j j j

w w x w y

w x w x w x y

β β

β β

+ =

+ =

∑ ∑ ∑
∑ ∑ ∑

  (4) 

The solutions of the normal equations (4) give 

 

( ) ( )

2

0 12 22 2

j j j j j j j j j j j j j j j j j

j j j j j j j j j j

w x w y w x w x y w w x y w x w y

w w x w x w w x w x

β β
− −

= =
− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 (5) 

Now having determined 
0 1
,β β  the estimates are 

0 1ĵ jy xβ β= + .  This is the typical method least squares 

linear regression.  
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Cleveland’s Method 

Cleveland (1981) gave a very brief outline of his method of scatterplot smoothing and then gave instructions 

on obtaining FORTRAN routines LOWESS and LOWEST from the Computing Information Library at Bell 

Laboratories.  The routine LOWESS, which is directly called by the user calls a support routine LOWEST 

and it is withing this support routine that a very efficient and clever weighted least squares regression is 

employed.  The documentation and Ratfor1 versions of LOWESS and LOWEST are shown in the Appendix 

and it is subroutine LOWEST that actually computes the least squares estimate at the smoothing point. 

Consider the normal equations (4) for a weighted least squares solution for the parameters 
0 1
,β β  of the 

regression line (line of best fit) 
0 1

y xβ β= +  for the data pairs ( ),j jx y  with weights 
jw  for 1,2, 3, ,j q= … . 

These equations may be written in terms of normalized weights 
j
w∗  and reduced coordinates 

jx  defined as 

 
j

j

j

w
w

w

∗ =
∑

 (6) 

 
j jx x g= −  (7) 

where 
j j

j

w x
g

w

∗

∗
=
∑
∑

 is a weighted mean, and the normal equations (4) can be written as 

 
( ) ( )
( ) ( )

0 1

2
0 1

j j j j j

j j j j j j j

w w x w y

w x w x w x y

β β

β β

∗ ∗ ∗

∗ ∗ ∗

+ =

+ =

∑ ∑ ∑
∑ ∑ ∑

  (8) 

We now show that (i) 1
j
w∗ =∑  and (ii) 0

j j
w x∗ =∑ . 

(i) Since 
j

j

j

w
w

w

∗ =
∑

 then 
1 21 2 1

q jn
j

j j j j j

w w w ww w w
w

w w w w w

∗
+ + +

= + + + = = =
∑

∑
∑ ∑ ∑ ∑ ∑

⋯

⋯  

(ii) Since 
j j

j

w x
g

w

∗

∗
=
∑
∑

 and 1
j
w∗ =∑  then 

j j
g w x∗=∑ .  Also, ( )j j j j j j j

w x w x g w x w g∗ ∗ ∗ ∗= − = − . 

 So 0
j j j j j j j j
w x w x w g w x g w g g∗ ∗ ∗ ∗ ∗= − = − = − =∑ ∑ ∑ ∑  

Using these results in (8) gives the solutions 

 
0 1 2

  and  
j j j

j j

j j

w x y
w y

w x
β β

∗
∗

∗
= =

∑
∑

∑
 (9) 

For the smoothing point ( ),s sx y  the estimate 
0 1ŝ s

y xβ β= +  and using (9) we may write 

 
2 2

ˆ
j j j s

s j j s j j j j j

j j j j

w x y x
y w y x w y w x y

w x w x

∗
∗ ∗ ∗

∗ ∗

  = + = +    

∑
∑ ∑ ∑

∑ ∑
 (10) 

Let 
2

s

j j

x
b

w x∗
=
∑

 then (10) becomes 

 
1 Ratfor (short for Rational Fortran) is a programming language implemented as a pre-processor for Fortran 66. It 

provided modern control structures, unavailable in Fortran 66, to replace GOTOs and statement numbers (Wikipedia). 
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( )
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2

ˆ

1 1 1

s j j j j j

q q q q q

q q q q

q q q

y w y b w x y

w y w y w y b w x y w x y w x y

y w bw x y w bw x y w bw x

w bx y w bx y w bx y

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

= +

= + + + + + + +

= + + + + + +

= + + + + + +

∑ ∑
⋯ ⋯

⋯

⋯  (11) 

And with the substitution ( )1
j j j

W w bx∗= +  in (11) the estimate at the smoothing point ( ),
s s
x y  is given 

by 

 
1 1 2 2

1

ˆ

q

s q q j j

j

y W y W y W y W y
=

= + + + =∑⋯  (12) 

You can see the application of Cleveland’s least squares method in the Ratfor code for the FORTRAN 

subroutine LOWEST, shown in the Appendix lines 245 to 348.  In particular (i) local weights are calculated  

and their sum obtained in lines 311-321; weights are normalized in a do loop in lines 326-7; a weighted mean 

is calculated in a do loop in lines 329-331; a reduced x-coordinate for the smoothing point is calculated in line 

332; the factor 
2

s

j j

x
b

w x∗
=
∑

 is calculated in line 338; the modified weights ( )1
j j j

W w bx∗= +  are calculated 

in a do loop lines 339-340; and finally the estimate at the smoothing point is calculated from (12) in lines 

343-345. 

The local weights in subroutine LOWEST are computed from a tricube weight function 

3
3

1
j

j

r
w

h

     = −       

  

where 
j
r  is the absolute vale of the x-distance from the smoothing point to the jth nearest neighbour and 

( )max jh r= .  The weights vary from 1 at the smoothing point where 0jr =  to zero at the point furthest 

from the smoothing point where 
j
r h= .  The calculation of these local weights are shown in lines 307-321. 
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Appendix 

FORTRAN program LOWESS 

https://github.com/andreas-h/pyloess/blob/master/src/lowess.f 

 

 

* wsc@research.bell-labs.com Mon Dec 30 16:55 EST 1985 1 
* W. S. Cleveland 2 
* Bell Laboratories 3 
* Murray Hill NJ 07974 4 
*  5 
* outline of this file: 6 
*    lines 1-72   introduction 7 
*        73-177   documentation for lowess 8 
*       178-238   ratfor version of lowess 9 
*       239-301   documentation for lowest 10 
*       302-350   ratfor version of lowest 11 
*       351-end   test driver and fortran version of lowess and lowest 12 
*  13 
*   a multivariate version is available by "send dloess from a" 14 
*  15 
*              COMPUTER PROGRAMS FOR LOCALLY WEIGHTED REGRESSION 16 
*  17 
*             This package consists  of  two  FORTRAN  programs  for 18 
*        smoothing    scatterplots   by   robust   locally   weighted 19 
*        regression, or lowess.   The  principal  routine  is  LOWESS 20 
*        which   computes   the  smoothed  values  using  the  method 21 
*        described in The Elements of Graphing Data, by William S. 22 
*        Cleveland    (Wadsworth,    555 Morego   Street,   Monterey, 23 
*        California 93940). 24 
*  25 
*             LOWESS calls a support routine, LOWEST, the code for 26 
*        which is included. LOWESS also calls a routine  SORT,  which 27 
*        the user must provide. 28 
*  29 
*             To reduce the computations, LOWESS  requires  that  the 30 
*        arrays  X  and  Y,  which  are  the  horizontal and vertical 31 
*        coordinates, respectively, of the scatterplot, be such  that 32 
*        X  is  sorted  from  smallest  to  largest.   The  user must 33 
*        therefore use another sort routine which will sort X  and  Y 34 
*        according  to X. 35 
*             To summarize the scatterplot, YS,  the  fitted  values, 36 
*        should  be  plotted  against X.   No  graphics  routines are 37 
*        available in the package and must be supplied by the user. 38 
*  39 
*             The FORTRAN code for the routines LOWESS and LOWEST has 40 
*        been   generated   from   higher   level   RATFOR   programs 41 
*        (B. W. Kernighan, ``RATFOR:  A Preprocessor for  a  Rational 42 
*        Fortran,''  Software Practice and Experience, Vol. 5 (1975), 43 
*        which are also included. 44 
*  45 
*             The following are data and output from LOWESS that  can 46 
*        be  used  to check your implementation of the routines.  The 47 
*        notation (10)v means 10 values of v. 48 
*  49 
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*  50 
*  51 
*  52 
*        X values: 53 
*          1  2  3  4  5  (10)6  8  10  12  14  50 54 
*  55 
*        Y values: 56 
*           18  2  15  6  10  4  16  11  7  3  14  17  20  12  9  13  1  8  5  19 57 
*  58 
*  59 
*        YS values with F = .25, NSTEPS = 0, DELTA = 0.0 60 
*         13.659  11.145  8.701  9.722  10.000  (10)11.300  13.000  6.440  5.596 61 
*           5.456  18.998 62 
*  63 
*        YS values with F = .25, NSTEPS = 0 ,  DELTA = 3.0 64 
*          13.659  12.347  11.034  9.722  10.511  (10)11.300  13.000  6.440  5.596 65 
*            5.456  18.998 66 
*  67 
*        YS values with F = .25, NSTEPS = 2, DELTA = 0.0 68 
*          14.811  12.115  8.984  9.676  10.000  (10)11.346  13.000  6.734  5.744 69 
*            5.415  18.998 70 
*  71 
*  72 
*  73 
*  74 
*                                   LOWESS 75 
*  76 
*  77 
*  78 
*        Calling sequence 79 
*  80 
*        CALL LOWESS(X,Y,N,F,NSTEPS,DELTA,YS,RW,RES) 81 
*  82 
*        Purpose 83 
*  84 
*        LOWESS computes the smooth of a scatterplot of Y  against  X 85 
*        using  robust  locally  weighted regression.  Fitted values, 86 
*        YS, are computed at each of the  values  of  the  horizontal 87 
*        axis in X. 88 
*  89 
*        Argument description 90 
*  91 
*              X = Input; abscissas of the points on the 92 
*                  scatterplot; the values in X must be ordered 93 
*                  from smallest to largest. 94 
*              Y = Input; ordinates of the points on the 95 
*                  scatterplot. 96 
*              N = Input; dimension of X,Y,YS,RW, and RES. 97 
*              F = Input; specifies the amount of smoothing; F is 98 
*                  the fraction of points used to compute each 99 
*                  fitted value; as F increases the smoothed values 100 
*                  become smoother; choosing F in the range .2 to 101 
*                  .8 usually results in a good fit; if you have no 102 
*                  idea which value to use, try F = .5. 103 
*         NSTEPS = Input; the number of iterations in the robust 104 
*                  fit; if NSTEPS = 0, the nonrobust fit is 105 
*                  returned; setting NSTEPS equal to 2 should serve 106 
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*                  most purposes. 107 
*          DELTA = input; nonnegative parameter which may be used 108 
*                  to save computations; if N is less than 100, set 109 
*                  DELTA equal to 0.0; if N is greater than 100 you 110 
*                  should find out how DELTA works by reading the 111 
*                  additional instructions section. 112 
*             YS = Output; fitted values; YS(I) is the fitted value 113 
*                  at X(I); to summarize the scatterplot, YS(I) 114 
*                  should be plotted against X(I). 115 
*             RW = Output; robustness weights; RW(I) is the weight 116 
*                  given to the point (X(I),Y(I)); if NSTEPS = 0, 117 
*                  RW is not used. 118 
*            RES = Output; residuals; RES(I) = Y(I)-YS(I). 119 
*  120 
*  121 
*        Other programs called 122 
*  123 
*               LOWEST 124 
*               SSORT 125 
*  126 
*        Additional instructions 127 
*  128 
*        DELTA can be used to save computations.   Very  roughly  the 129 
*        algorithm  is  this:   on the initial fit and on each of the 130 
*        NSTEPS iterations locally weighted regression fitted  values 131 
*        are computed at points in X which are spaced, roughly, DELTA 132 
*        apart; then the fitted values at the  remaining  points  are 133 
*        computed  using  linear  interpolation.   The  first locally 134 
*        weighted regression (l.w.r.) computation is carried  out  at 135 
*        X(1)  and  the  last  is  carried  out at X(N).  Suppose the 136 
*        l.w.r. computation is carried out at  X(I).   If  X(I+1)  is 137 
*        greater  than  or  equal  to  X(I)+DELTA,  the  next  l.w.r. 138 
*        computation is carried out at X(I+1).   If  X(I+1)  is  less 139 
*        than X(I)+DELTA, the next l.w.r.  computation is carried out 140 
*        at the largest X(J) which is greater than or equal  to  X(I) 141 
*        but  is not greater than X(I)+DELTA.  Then the fitted values 142 
*        for X(K) between X(I)  and  X(J),  if  there  are  any,  are 143 
*        computed  by  linear  interpolation  of the fitted values at 144 
*        X(I) and X(J).  If N is less than 100 then DELTA can be  set 145 
*        to  0.0  since  the  computation time will not be too great. 146 
*        For larger N it is typically not necessary to carry out  the 147 
*        l.w.r.  computation for all points, so that much computation 148 
*        time can be saved by taking DELTA to be  greater  than  0.0. 149 
*        If  DELTA =  Range  (X)/k  then,  if  the  values  in X were 150 
*        uniformly  scattered  over  the  range,  the   full   l.w.r. 151 
*        computation  would be carried out at approximately k points. 152 
*        Taking k to be 50 often works well. 153 
*  154 
*        Method 155 
*  156 
*        The fitted values are computed by using the nearest neighbor 157 
*        routine  and  robust locally weighted regression of degree 1 158 
*        with the tricube weight function.  A few additional features 159 
*        have  been  added.  Suppose r is FN truncated to an integer. 160 
*        Let  h  be  the  distance  to  the  r-th  nearest   neighbor 161 
*        from X(I).   All  points within h of X(I) are used.  Thus if 162 
*        the r-th nearest neighbor is exactly the  same  distance  as 163 
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*        other  points,  more  than r points can possibly be used for 164 
*        the smooth at  X(I).   There  are  two  cases  where  robust 165 
*        locally  weighted regression of degree 0 is actually used at 166 
*        X(I).  One case occurs when  h  is  0.0.   The  second  case 167 
*        occurs  when  the  weighted  standard error of the X(I) with 168 
*        respect to the weights w(j) is  less  than  .001  times  the 169 
*        range  of the X(I), where w(j) is the weight assigned to the 170 
*        j-th point of X (the tricube  weight  times  the  robustness 171 
*        weight)  divided by the sum of all of the weights.  Finally, 172 
*        if the w(j) are all zero for the smooth at X(I), the  fitted 173 
*        value is taken to be Y(I). 174 
*  175 
*  176 
*  177 
*  178 
*  subroutine lowess(x,y,n,f,nsteps,delta,ys,rw,res) 179 
*  real x(n),y(n),ys(n),rw(n),res(n) 180 
*  logical ok 181 
*  if (n<2){ ys(1) = y(1); return } 182 
*  ns = max0(min0(ifix(f*float(n)),n),2)  # at least two, at most n points 183 
*  for(iter=1; iter<=nsteps+1; iter=iter+1){      # robustness iterations 184 
*         nleft = 1; nright = ns 185 
*         last = 0        # index of prev estimated point 186 
*         i = 1   # index of current point 187 
*         repeat{ 188 
*                 while(nright<n){ 189 
*  # move nleft, nright to right if radius decreases 190 
*                         d1 = x(i)-x(nleft) 191 
*                         d2 = x(nright+1)-x(i) 192 
*  # if d1<=d2 with x(nright+1)==x(nright), lowest fixes 193 
*                         if (d1<=d2) break 194 
*  # radius will not decrease by move right 195 
*                         nleft = nleft+1 196 
*                         nright = nright+1 197 
*                         } 198 
*                 call lowest(x,y,n,x(i),ys(i),nleft,nright,res,iter>1,rw,ok) 199 
*  # fitted value at x(i) 200 
*                 if (!ok) ys(i) = y(i) 201 
*  # all weights zero - copy over value (all rw==0) 202 
*                 if (last<i-1) { # skipped points -- interpolate 203 
*                         denom = x(i)-x(last)    # non-zero - proof? 204 
*                         for(j=last+1; j<i; j=j+1){ 205 
*                                 alpha = (x(j)-x(last))/denom 206 
*                                 ys(j) = alpha*ys(i)+(1.0-alpha)*ys(last) 207 
*                                 } 208 
*                         } 209 
*                 last = i        # last point actually estimated 210 
*                 cut = x(last)+delta     # x coord of close points 211 
*                 for(i=last+1; i<=n; i=i+1){     # find close points 212 
*                         if (x(i)>cut) break     # i one beyond last pt within cut 213 
*                         if(x(i)==x(last)){      # exact match in x 214 
*                                 ys(i) = ys(last) 215 
*                                 last = i 216 
*                                 } 217 
*                         } 218 
*                 i=max0(last+1,i-1) 219 
*  # back 1 point so interpolation within delta, but always go forward 220 
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*                 } until(last>=n) 221 
*         do i = 1,n      # residuals 222 
*                 res(i) = y(i)-ys(i) 223 
*         if (iter>nsteps) break  # compute robustness weights except last time 224 
*         do i = 1,n 225 
*                 rw(i) = abs(res(i)) 226 
*         call sort(rw,n) 227 
*         m1 = 1+n/2; m2 = n-m1+1 228 
*         cmad = 3.0*(rw(m1)+rw(m2))      # 6 median abs resid 229 
*         c9 = .999*cmad; c1 = .001*cmad 230 
*         do i = 1,n { 231 
*                 r = abs(res(i)) 232 
*                 if(r<=c1) rw(i)=1.      # near 0, avoid underflow 233 
*                 else if(r>c9) rw(i)=0.  # near 1, avoid underflow 234 
*                 else rw(i) = (1.0-(r/cmad)**2)**2 235 
*                 } 236 
*         } 237 
*  return 238 
*  end 239 
* 240 
* 241 
* 242 
* 243 
* 244 
*                                   LOWEST 245 
*  246 
*  247 
*        Calling sequence 248 
*  249 
*        CALL LOWEST(X,Y,N,XS,YS,NLEFT,NRIGHT,W,USERW,RW,OK) 250 
*  251 
*        Purpose 252 
*  253 
*        LOWEST is a support routine for LOWESS and  ordinarily  will 254 
*        not  be  called  by  the  user.   The  fitted  value, YS, is 255 
*        computed  at  the  value,  XS,  of  the   horizontal   axis. 256 
*        Robustness  weights,  RW,  can  be employed in computing the 257 
*        fit. 258 
*  259 
*        Argument description 260 
*  261 
*  262 
*              X = Input; abscissas of the points on the 263 
*                  scatterplot; the values in X must be ordered 264 
*                  from smallest to largest. 265 
*              Y = Input; ordinates of the points on the 266 
*                  scatterplot. 267 
*              N = Input; dimension of X,Y,W, and RW. 268 
*             XS = Input; value of the horizontal axis at which the 269 
*                  smooth is computed. 270 
*             YS = Output; fitted value at XS. 271 
*          NLEFT = Input; index of the first point which should be 272 
*                  considered in computing the fitted value. 273 
*         NRIGHT = Input; index of the last point which should be 274 
*                  considered in computing the fitted value. 275 
*              W = Output; W(I) is the weight for Y(I) used in the 276 
*                  expression for YS, which is the sum from 277 



10 

 

*                  I = NLEFT to NRIGHT of W(I)*Y(I); W(I) is 278 
*                  defined only at locations NLEFT to NRIGHT. 279 
*          USERW = Input; logical variable; if USERW is .TRUE., a 280 
*                  robust fit is carried out using the weights in 281 
*                  RW; if USERW is .FALSE., the values in RW are 282 
*                  not used. 283 
*             RW = Input; robustness weights. 284 
*             OK = Output; logical variable; if the weights for the 285 
*                  smooth are all 0.0, the fitted value, YS, is not 286 
*                  computed and OK is set equal to .FALSE.; if the 287 
*                  fitted value is computed OK is set equal to 288 
*  289 
*  290 
*        Method 291 
*  292 
*        The smooth at XS is computed using (robust) locally weighted 293 
*        regression of degree 1.  The tricube weight function is used 294 
*        with h equal to the maximum of XS-X(NLEFT) and X(NRIGHT)-XS. 295 
*        Two  cases  where  the  program  reverts to locally weighted 296 
*        regression of degree 0 are described  in  the  documentation 297 
*        for LOWESS. 298 
* 299 
* 300 
* 301 
* 302 
*  subroutine lowest(x,y,n,xs,ys,nleft,nright,w,userw,rw,ok) 303 
*  real x(n),y(n),w(n),rw(n) 304 
*  logical userw,ok 305 
*  range = x(n)-x(1) 306 
*  h = amax1(xs-x(nleft),x(nright)-xs) 307 
*  h9 = .999*h 308 
*  h1 = .001*h 309 
*  a = 0.0        # sum of weights 310 
*  for(j=nleft; j<=n; j=j+1){     # compute weights (pick up all ties on right) 311 
*         w(j)=0. 312 
*         r = abs(x(j)-xs) 313 
*         if (r<=h9) {    # small enough for non-zero weight 314 
*                 if (r>h1) w(j) = (1.0-(r/h)**3)**3 315 
*                 else      w(j) = 1. 316 
*                 if (userw) w(j) = rw(j)*w(j) 317 
*                 a = a+w(j) 318 
*                 } 319 
*         else if(x(j)>xs)break   # get out at first zero wt on right 320 
*         } 321 
*  nrt=j-1        # rightmost pt (may be greater than nright because of ties) 322 
*  if (a<=0.0) ok = FALSE 323 
*  else { # weighted least squares 324 
*         ok = TRUE 325 
*         do j = nleft,nrt 326 
*                 w(j) = w(j)/a   # make sum of w(j) == 1 327 
*         if (h>0.) {     # use linear fit 328 
*                 a = 0.0 329 
*                 do j = nleft,nrt 330 
*                         a = a+w(j)*x(j) # weighted center of x values 331 
*                 b = xs-a 332 
*                 c = 0.0 333 
*                 do j = nleft,nrt 334 
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*                         c = c+w(j)*(x(j)-a)**2 335 
*                 if(sqrt(c)>.001*range) { 336 
*  # points are spread out enough to compute slope 337 
*                         b = b/c 338 
*                         do j = nleft,nrt 339 
*                                 w(j) = w(j)*(1.0+b*(x(j)-a)) 340 
*                         } 341 
*                 } 342 
*         ys = 0.0 343 
*         do j = nleft,nrt 344 
*                 ys = ys+w(j)*y(j) 345 
*         } 346 
*  return 347 
*  end 348 
* 349 
* 350 
* 351 
c  test driver for lowess 352 
c  for expected output, see introduction 353 
      double precision x(20), y(20), ys(20), rw(20), res(20) 354 
      data x /1,2,3,4,5,10*6,8,10,12,14,50/ 355 
      data y /18,2,15,6,10,4,16,11,7,3,14,17,20,12,9,13,1,8,5,19/ 356 
      call lowess(x,y,20,.25,0,0.,ys,rw,res) 357 
      write(6,*) ys 358 
      call lowess(x,y,20,.25,0,3.,ys,rw,res) 359 
      write(6,*) ys 360 
      call lowess(x,y,20,.25,2,0.,ys,rw,res) 361 
      write(6,*) ys 362 
      end 363 
c************************************************************** 364 
c  Fortran output from ratfor 365 
c 366 
      subroutine lowess(x, y, n, f, nsteps, delta, ys, rw, res) 367 
      integer n, nsteps 368 
      double precision x(n), y(n), f, delta, ys(n), rw(n), res(n) 369 
      integer nright, i, j, iter, last, mid(2), ns, nleft 370 
      double precision cut, cmad, r, d1, d2 371 
      double precision c1, c9, alpha, denom, dabs 372 
      logical ok 373 
      if (n .ge. 2) goto 1 374 
         ys(1) = y(1) 375 
         return 376 
c at least two, at most n points 377 
   1  ns = max(min(int(f*dble(n)), n), 2) 378 
      iter = 1 379 
         goto  3 380 
   2     iter = iter+1 381 
   3     if (iter .gt. nsteps+1) goto  22 382 
c robustness iterations 383 
         nleft = 1 384 
         nright = ns 385 
c index of prev estimated point 386 
         last = 0 387 
c index of current point 388 
         i = 1 389 
   4        if (nright .ge. n) goto  5 390 
c move nleft, nright to right if radius decreases 391 
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               d1 = x(i)-x(nleft) 392 
c if d1<=d2 with x(nright+1)==x(nright), lowest fixes 393 
               d2 = x(nright+1)-x(i) 394 
               if (d1 .le. d2) goto  5 395 
c radius will not decrease by move right 396 
               nleft = nleft+1 397 
               nright = nright+1 398 
               goto  4 399 
c fitted value at x(i) 400 
   5        call lowest(x, y, n, x(i), ys(i), nleft, nright, res, iter 401 
     +     .gt. 1, rw, ok) 402 
            if (.not. ok) ys(i) = y(i) 403 
c all weights zero - copy over value (all rw==0) 404 
            if (last .ge. i-1) goto 9 405 
               denom = x(i)-x(last) 406 
c skipped points -- interpolate 407 
c non-zero - proof? 408 
               j = last+1 409 
                  goto  7 410 
   6              j = j+1 411 
   7              if (j .ge. i) goto  8 412 
                  alpha = (x(j)-x(last))/denom 413 
                  ys(j) = alpha*ys(i)+(1.D0-alpha)*ys(last) 414 
                  goto  6 415 
   8           continue 416 
c last point actually estimated 417 
   9        last = i 418 
c x coord of close points 419 
            cut = x(last)+delta 420 
            i = last+1 421 
               goto  11 422 
  10           i = i+1 423 
  11           if (i .gt. n) goto  13 424 
c find close points 425 
               if (x(i) .gt. cut) goto  13 426 
c i one beyond last pt within cut 427 
               if (x(i) .ne. x(last)) goto 12 428 
                  ys(i) = ys(last) 429 
c exact match in x 430 
                  last = i 431 
  12           continue 432 
               goto  10 433 
c back 1 point so interpolation within delta, but always go forward 434 
  13        i = max(last+1, i-1) 435 
  14        if (last .lt. n) goto  4 436 
c residuals 437 
         do  15 i = 1, n 438 
            res(i) = y(i)-ys(i) 439 
  15        continue 440 
         if (iter .gt. nsteps) goto  22 441 
c compute robustness weights except last time 442 
         do  16 i = 1, n 443 
            rw(i) = dabs(res(i)) 444 
  16        continue 445 
         call ssort(rw,n) 446 
         mid(1) = n/2+1 447 
         mid(2) = n-mid(1)+1 448 
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c 6 median abs resid 449 
         cmad = 3.D0*(rw(mid(1))+rw(mid(2))) 450 
         c9 = .999999D0*cmad 451 
         c1 = .000001D0*cmad 452 
         do  21 i = 1, n 453 
            r = dabs(res(i)) 454 
            if (r .gt. c1) goto 17 455 
               rw(i) = 1.D0 456 
c near 0, avoid underflow 457 
               goto  20 458 
  17           if (r .le. c9) goto 18 459 
                  rw(i) = 0.D0 460 
c near 1, avoid underflow 461 
                  goto  19 462 
  18              rw(i) = (1.D0-(r/cmad)**2.D0)**2.D0 463 
  19        continue 464 
  20        continue 465 
  21        continue 466 
         goto  2 467 
  22  return 468 
      end 469 
       470 
       471 
      subroutine lowest(x, y, n, xs, ys, nleft, nright, w, userw 472 
     +, rw, ok) 473 
      integer n 474 
      integer nleft, nright 475 
      double precision x(n), y(n), xs, ys, w(n), rw(n) 476 
      logical userw, ok 477 
      integer nrt, j 478 
      double precision dabs, a, b, c, h, r 479 
      double precision h1, dsqrt, h9, max, range 480 
      range = x(n)-x(1) 481 
      h = max(xs-x(nleft), x(nright)-xs) 482 
      h9 = .999999D0*h 483 
      h1 = .000001D0*h 484 
c sum of weights 485 
      a = 0.D0 486 
      j = nleft 487 
         goto  2 488 
   1     j = j+1 489 
   2     if (j .gt. n) goto  7 490 
c compute weights (pick up all ties on right) 491 
         w(j) = 0.D0 492 
         r = dabs(x(j)-xs) 493 
         if (r .gt. h9) goto 5 494 
            if (r .le. h1) goto 3 495 
               w(j) = (1.D0-(r/h)**3.D0)**3.D0 496 
c small enough for non-zero weight 497 
               goto  4 498 
   3           w(j) = 1.D0 499 
   4        if (userw) w(j) = rw(j)*w(j) 500 
            a = a+w(j) 501 
            goto  6 502 
   5        if (x(j) .gt. xs) goto  7 503 
c get out at first zero wt on right 504 
   6     continue 505 
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         goto  1 506 
c rightmost pt (may be greater than nright because of ties) 507 
   7  nrt = j-1 508 
      if (a .gt. 0.D0) goto 8 509 
         ok = .false. 510 
         goto  16 511 
   8     ok = .true. 512 
c weighted least squares 513 
         do  9 j = nleft, nrt 514 
c make sum of w(j) == 1 515 
            w(j) = w(j)/a 516 
   9        continue 517 
         if (h .le. 0.D0) goto 14 518 
            a = 0.D0 519 
c use linear fit 520 
            do  10 j = nleft, nrt 521 
c weighted center of x values 522 
               a = a+w(j)*x(j) 523 
  10           continue 524 
            b = xs-a 525 
            c = 0.D0 526 
            do  11 j = nleft, nrt 527 
               c = c+w(j)*(x(j)-a)**2 528 
  11           continue 529 
            if (dsqrt(c) .le. .0000001D0*range) goto 13 530 
               b = b/c 531 
c points are spread out enough to compute slope 532 
               do  12 j = nleft, nrt 533 
                  w(j) = w(j)*(b*(x(j)-a)+1.D0) 534 
  12              continue 535 
  13        continue 536 
  14     ys = 0.D0 537 
         do  15 j = nleft, nrt 538 
            ys = ys+w(j)*y(j) 539 
  15        continue 540 
  16  return 541 
      end 542 
 543 
       544 
      subroutine ssort(a,n) 545 
 546 
C Sorting by Hoare method, C.A.C.M. (1961) 321, modified by Singleton 547 
C C.A.C.M. (1969) 185. 548 
   double precision a(n) 549 
   integer iu(16), il(16) 550 
      integer p 551 
 552 
      i =1 553 
      j = n 554 
      m = 1 555 
  5   if (i.ge.j) goto 70 556 
c first order a(i),a(j),a((i+j)/2), and use median to split the data 557 
 10   k=i 558 
      ij=(i+j)/2 559 
      t=a(ij) 560 
      if(a(i) .le. t) goto 20 561 
      a(ij)=a(i) 562 
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      a(i)=t 563 
      t=a(ij) 564 
 20   l=j 565 
      if(a(j).ge.t) goto 40 566 
      a(ij)=a(j) 567 
      a(j)=t 568 
      t=a(ij) 569 
      if(a(i).le.t) goto 40 570 
      a(ij)=a(i) 571 
      a(i)=t 572 
      t=a(ij) 573 
      goto 40 574 
 30   a(l)=a(k) 575 
      a(k)=tt 576 
 40   l=l-1 577 
      if(a(l) .gt. t) goto 40 578 
      tt=a(l) 579 
c split the data into a(i to l) .lt. t, a(k to j) .gt. t 580 
 50   k=k+1 581 
      if(a(k) .lt. t) goto 50 582 
      if(k .le. l) goto 30 583 
      p=m 584 
      m=m+1 585 
c split the larger of the segments 586 
      if (l-i .le. j-k) goto 60 587 
      il(p)=i 588 
      iu(p)=l 589 
      i=k 590 
      goto 80 591 
 60   il(p)=k 592 
      iu(p)=j 593 
      j=l 594 
      goto 80 595 
 70   m=m-1 596 
      if(m .eq. 0) return 597 
      i =il(m) 598 
      j=iu(m) 599 
c short sections are sorted by bubble sort 600 
 80   if (j-i .gt. 10) goto 10 601 
      if (i .eq. 1) goto 5 602 
      i=i-1 603 
 90   i=i+1 604 
      if(i .eq. j) goto 70 605 
      t=a(i+1) 606 
      if(a(i) .le. t) goto 90 607 
      k=i 608 
 100  a(k+1)=a(k) 609 
      k=k-1 610 
      if(t .lt. a(k)) goto 100 611 
      a(k+1)=t 612 
      goto 90 613 
 614 
      end      615 

 

 


