
1

Locally Weighted Linear Regression in LOWESS:

Cleveland’s Method

R.E. Deakin1 and M.N. Hunter2
1Dunsborough, WA, 6281, Australia; 2Maribyrnong, VIC, 3032, Australia

email: randm.deakin@gmail.com

12-Jun-2020

Abstract

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm

introduced by William S. Cleveland in 1979. In 1981 Cleveland made available FORTRAN routines

LOWESS and LOWEST from the Computing Information Library at Bell Laboratories. These are

reproduced in the Appendix. The routine LOWEST performs a locally weighted least squares linear

regression on a set of data pairs (),
j j
x y 1,2, 3, ,j q= … where the weights are functions of the distances

j
r

from the point to be ‘smoothed’ (),s sx y . The routine returns the estimate
0 1ŝ s

y xβ β= + where
0 1
,β β are

the parameters of a line of best fit where the
j
x are considered error-free.

Routine LOWEST uses a clever modification of the usual weighted least squares regression which will be

explained below.

Introduction

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm

proposed by William S. Cleveland (Cleveland 1979). For n data pairs (),
i i
x y 1,2, ,i n= … where the x-

values are considered as independent and error-free and the y-values as measurements subject to error, the

algorithm assumes the n points are ordered from smallest to largest x-value and selects a smoothing point,

say (),
s s
x y 1,2, ,s n= … and its q nearest neighbours, noting that the smoothing point (),

s s
x y is a

neighbour of itself. These q nearest neighbours are a subset of the n data pairs and the algorithm fits a

polynomial to the subset that is used to calculate the estimate ()ˆ,
s s
x y noting that the ‘hat’ symbol ()^

denotes an estimate of a quantity. Cleveland (1979, p. 833) suggests that polynomials of degree 1:

0 1
y xβ β= + (a straight line) or degree 2: 2

0 1 2
y x xβ β β= + + (a quadratic curve) are sufficient for most

purposes and notes that the polynomial of degree 1 “should almost always provide adequate smoothed points

and computational ease.” In this paper we only consider polynomials of degree 1. Now, since only two

points are required to define a straight line, and q will always be greater than 2 in practice, least squares is

used to determine estimates of the parameters of the line of best fit with local weights 0 1
j
w≤ ≤ for

1,2, ,j q= … as functions of the distances from the smoothing point (),s sx y to each of the q nearest

neighbours. [The weight function most often used in lowess smoothing is known as tricube (more about this

later) and yields local weights that decrease from 1 at the smoothing point to 0 at the furthest of the q

points.] After computing the estimate
ŝ
y at the smoothing point from

0 1ŝ s
y xβ β= + (using locally

weighted linear regression) the smoothing point is increased by one, i.e., 1s s= + and the subset of q

nearest neighbours determined (which may be the same subset as for the previous smoothing point) and the

next estimate computed. This process is repeated until s n=

Least Squares Linear Regression

The y-values in the (),j jx y data pairs are assumed to be measurements subject to error and if blunders and

systematic errors are eliminated, the remaining random errors can be allowed for by the application of small

corrections known as residuals. Hence, we write

2

 measurement + residual = best estimate (1)

Also, a quantity that is being measured has both a true value (forever unknown) and an estimated value (the

best estimate) and after removing blunders and systematic errors from the measurements leaving only

random errors of measurements, we may write

 measurement = true value + random error

Often, a measurement may be the mean of several measurements or measurements may be obtained from

different types of equipment or measurement processes and they may be of varying precision. To allow for

this we may weight our measurements, where a weight is a numerical value that reflects the degree of

confidence we have in the measurement. The greater the weight the more confident we are in the particular

measurement. A weight is often defined to be inversely proportional to the variance of a measurement where

variance is a statistical measure of precision. Precise measurements have a small variance.

To solve for the values of the two parameters 0 1
,β β we write q observation equations having the general

form of (1)

 ˆ ˆ or
j j j j j j
y v y v y y+ = = − (2)

where
j
v denotes the residual of the jth point and

ĵ
y denotes the best estimate.

Now the least squares principle is that the best estimates are those that make the sum of the squares of the

residuals, multiplied by their weights, a minimum. To achieve this, write the least squares function ϕ as

 ()
22 2 2 2

1 1 2 2
ˆ

n n j j j j j
w v w v w v w v w y yϕ = + + + = = −∑ ∑⋯

where the following summation notations are equivalent:
1 2 3

1

q

j j j q

j j

v v v v v v v
=

= = = + + + +∑ ∑ ∑ ⋯

And since
0 1ĵ jy xβ β= +

 () ()
2

0 1 0 1
,

j j j
w x yϕ ϕ β β β β= = + −∑

()0 1
,ϕ β β will have a minimum value when the partial derivatives

0 1

,
ϕ ϕ

β β

∂ ∂

∂ ∂
 both equal zero, that is when

()

()

0 1

0

0 1

1

2 0

2 0

j j j

j j j j

w x y

w x x y

ϕ
β β

β

ϕ
β β

β

∂
= + − =

∂

∂
= + − =

∂

∑

∑
 (3)

and cancelling the 2’s in (3) and rearranging gives two normal equations

() ()
() ()

0 1

2
0 1

j j j j j

j j j j j j j

w w x w y

w x w x w x y

β β

β β

+ =

+ =

∑ ∑ ∑
∑ ∑ ∑

 (4)

The solutions of the normal equations (4) give

() ()

2

0 12 22 2

j j j j j j j j j j j j j j j j j

j j j j j j j j j j

w x w y w x w x y w w x y w x w y

w w x w x w w x w x

β β
− −

= =
− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 (5)

Now having determined
0 1
,β β the estimates are

0 1ĵ jy xβ β= + . This is the typical method least squares

linear regression.

3

Cleveland’s Method

Cleveland (1981) gave a very brief outline of his method of scatterplot smoothing and then gave instructions

on obtaining FORTRAN routines LOWESS and LOWEST from the Computing Information Library at Bell

Laboratories. The routine LOWESS, which is directly called by the user calls a support routine LOWEST

and it is withing this support routine that a very efficient and clever weighted least squares regression is

employed. The documentation and Ratfor1 versions of LOWESS and LOWEST are shown in the Appendix

and it is subroutine LOWEST that actually computes the least squares estimate at the smoothing point.

Consider the normal equations (4) for a weighted least squares solution for the parameters
0 1
,β β of the

regression line (line of best fit)
0 1

y xβ β= + for the data pairs (),j jx y with weights
jw for 1,2, 3, ,j q= … .

These equations may be written in terms of normalized weights
j
w∗ and reduced coordinates

jx defined as

j

j

j

w
w

w

∗ =
∑

 (6)

j jx x g= − (7)

where
j j

j

w x
g

w

∗

∗
=
∑
∑

 is a weighted mean, and the normal equations (4) can be written as

() ()
() ()

0 1

2
0 1

j j j j j

j j j j j j j

w w x w y

w x w x w x y

β β

β β

∗ ∗ ∗

∗ ∗ ∗

+ =

+ =

∑ ∑ ∑
∑ ∑ ∑

 (8)

We now show that (i) 1
j
w∗ =∑ and (ii) 0

j j
w x∗ =∑ .

(i) Since
j

j

j

w
w

w

∗ =
∑

 then
1 21 2 1

q jn
j

j j j j j

w w w ww w w
w

w w w w w

∗
+ + +

= + + + = = =
∑

∑
∑ ∑ ∑ ∑ ∑

⋯

⋯

(ii) Since
j j

j

w x
g

w

∗

∗
=
∑
∑

 and 1
j
w∗ =∑ then

j j
g w x∗=∑ . Also, ()j j j j j j j

w x w x g w x w g∗ ∗ ∗ ∗= − = − .

 So 0
j j j j j j j j
w x w x w g w x g w g g∗ ∗ ∗ ∗ ∗= − = − = − =∑ ∑ ∑ ∑

Using these results in (8) gives the solutions

0 1 2

 and
j j j

j j

j j

w x y
w y

w x
β β

∗
∗

∗
= =

∑
∑

∑
 (9)

For the smoothing point (),s sx y the estimate
0 1ŝ s

y xβ β= + and using (9) we may write

2 2

ˆ
j j j s

s j j s j j j j j

j j j j

w x y x
y w y x w y w x y

w x w x

∗
∗ ∗ ∗

∗ ∗

 = + = +

∑
∑ ∑ ∑

∑ ∑
 (10)

Let
2

s

j j

x
b

w x∗
=
∑

 then (10) becomes

1 Ratfor (short for Rational Fortran) is a programming language implemented as a pre-processor for Fortran 66. It

provided modern control structures, unavailable in Fortran 66, to replace GOTOs and statement numbers (Wikipedia).

4

()
() () ()
() () ()

1 1 2 2 1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2

ˆ

1 1 1

s j j j j j

q q q q q

q q q q

q q q

y w y b w x y

w y w y w y b w x y w x y w x y

y w bw x y w bw x y w bw x

w bx y w bx y w bx y

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

= +

= + + + + + + +

= + + + + + +

= + + + + + +

∑ ∑
⋯ ⋯

⋯

⋯ (11)

And with the substitution ()1
j j j

W w bx∗= + in (11) the estimate at the smoothing point (),
s s
x y is given

by

1 1 2 2

1

ˆ

q

s q q j j

j

y W y W y W y W y
=

= + + + =∑⋯ (12)

You can see the application of Cleveland’s least squares method in the Ratfor code for the FORTRAN

subroutine LOWEST, shown in the Appendix lines 245 to 348. In particular (i) local weights are calculated

and their sum obtained in lines 311-321; weights are normalized in a do loop in lines 326-7; a weighted mean

is calculated in a do loop in lines 329-331; a reduced x-coordinate for the smoothing point is calculated in line

332; the factor
2

s

j j

x
b

w x∗
=
∑

 is calculated in line 338; the modified weights ()1
j j j

W w bx∗= + are calculated

in a do loop lines 339-340; and finally the estimate at the smoothing point is calculated from (12) in lines

343-345.

The local weights in subroutine LOWEST are computed from a tricube weight function

3
3

1
j

j

r
w

h

 = −

where
j
r is the absolute vale of the x-distance from the smoothing point to the jth nearest neighbour and

()max jh r= . The weights vary from 1 at the smoothing point where 0jr = to zero at the point furthest

from the smoothing point where
j
r h= . The calculation of these local weights are shown in lines 307-321.

References

Cleveland, W.S., (1979), ‘Robust locally weighted regression and smoothing scatterplots’, Journal of the

American Statistical Association, Vol. 74, No. 368 (Dec., 1979), pp. 829-836

 http://home.eng.iastate.edu/~shermanp/STAT447/Lectures/Cleveland%20paper.pdf [accessed 23 Sep

2019]

Cleveland, W.S., (1981), ‘LOWESS: A program for smoothing scatterplots by robust locally weighted

regression’, The American Statistician, Vol. 35, No. 1 (Feb., 1981), p. 54

5

Appendix

FORTRAN program LOWESS

https://github.com/andreas-h/pyloess/blob/master/src/lowess.f

* wsc@research.bell-labs.com Mon Dec 30 16:55 EST 1985 1
* W. S. Cleveland 2
* Bell Laboratories 3
* Murray Hill NJ 07974 4
* 5
* outline of this file: 6
* lines 1-72 introduction 7
* 73-177 documentation for lowess 8
* 178-238 ratfor version of lowess 9
* 239-301 documentation for lowest 10
* 302-350 ratfor version of lowest 11
* 351-end test driver and fortran version of lowess and lowest 12
* 13
* a multivariate version is available by "send dloess from a" 14
* 15
* COMPUTER PROGRAMS FOR LOCALLY WEIGHTED REGRESSION 16
* 17
* This package consists of two FORTRAN programs for 18
* smoothing scatterplots by robust locally weighted 19
* regression, or lowess. The principal routine is LOWESS 20
* which computes the smoothed values using the method 21
* described in The Elements of Graphing Data, by William S. 22
* Cleveland (Wadsworth, 555 Morego Street, Monterey, 23
* California 93940). 24
* 25
* LOWESS calls a support routine, LOWEST, the code for 26
* which is included. LOWESS also calls a routine SORT, which 27
* the user must provide. 28
* 29
* To reduce the computations, LOWESS requires that the 30
* arrays X and Y, which are the horizontal and vertical 31
* coordinates, respectively, of the scatterplot, be such that 32
* X is sorted from smallest to largest. The user must 33
* therefore use another sort routine which will sort X and Y 34
* according to X. 35
* To summarize the scatterplot, YS, the fitted values, 36
* should be plotted against X. No graphics routines are 37
* available in the package and must be supplied by the user. 38
* 39
* The FORTRAN code for the routines LOWESS and LOWEST has 40
* been generated from higher level RATFOR programs 41
* (B. W. Kernighan, ``RATFOR: A Preprocessor for a Rational 42
* Fortran,'' Software Practice and Experience, Vol. 5 (1975), 43
* which are also included. 44
* 45
* The following are data and output from LOWESS that can 46
* be used to check your implementation of the routines. The 47
* notation (10)v means 10 values of v. 48
* 49

6

* 50
* 51
* 52
* X values: 53
* 1 2 3 4 5 (10)6 8 10 12 14 50 54
* 55
* Y values: 56
* 18 2 15 6 10 4 16 11 7 3 14 17 20 12 9 13 1 8 5 19 57
* 58
* 59
* YS values with F = .25, NSTEPS = 0, DELTA = 0.0 60
* 13.659 11.145 8.701 9.722 10.000 (10)11.300 13.000 6.440 5.596 61
* 5.456 18.998 62
* 63
* YS values with F = .25, NSTEPS = 0 , DELTA = 3.0 64
* 13.659 12.347 11.034 9.722 10.511 (10)11.300 13.000 6.440 5.596 65
* 5.456 18.998 66
* 67
* YS values with F = .25, NSTEPS = 2, DELTA = 0.0 68
* 14.811 12.115 8.984 9.676 10.000 (10)11.346 13.000 6.734 5.744 69
* 5.415 18.998 70
* 71
* 72
* 73
* 74
* LOWESS 75
* 76
* 77
* 78
* Calling sequence 79
* 80
* CALL LOWESS(X,Y,N,F,NSTEPS,DELTA,YS,RW,RES) 81
* 82
* Purpose 83
* 84
* LOWESS computes the smooth of a scatterplot of Y against X 85
* using robust locally weighted regression. Fitted values, 86
* YS, are computed at each of the values of the horizontal 87
* axis in X. 88
* 89
* Argument description 90
* 91
* X = Input; abscissas of the points on the 92
* scatterplot; the values in X must be ordered 93
* from smallest to largest. 94
* Y = Input; ordinates of the points on the 95
* scatterplot. 96
* N = Input; dimension of X,Y,YS,RW, and RES. 97
* F = Input; specifies the amount of smoothing; F is 98
* the fraction of points used to compute each 99
* fitted value; as F increases the smoothed values 100
* become smoother; choosing F in the range .2 to 101
* .8 usually results in a good fit; if you have no 102
* idea which value to use, try F = .5. 103
* NSTEPS = Input; the number of iterations in the robust 104
* fit; if NSTEPS = 0, the nonrobust fit is 105
* returned; setting NSTEPS equal to 2 should serve 106

7

* most purposes. 107
* DELTA = input; nonnegative parameter which may be used 108
* to save computations; if N is less than 100, set 109
* DELTA equal to 0.0; if N is greater than 100 you 110
* should find out how DELTA works by reading the 111
* additional instructions section. 112
* YS = Output; fitted values; YS(I) is the fitted value 113
* at X(I); to summarize the scatterplot, YS(I) 114
* should be plotted against X(I). 115
* RW = Output; robustness weights; RW(I) is the weight 116
* given to the point (X(I),Y(I)); if NSTEPS = 0, 117
* RW is not used. 118
* RES = Output; residuals; RES(I) = Y(I)-YS(I). 119
* 120
* 121
* Other programs called 122
* 123
* LOWEST 124
* SSORT 125
* 126
* Additional instructions 127
* 128
* DELTA can be used to save computations. Very roughly the 129
* algorithm is this: on the initial fit and on each of the 130
* NSTEPS iterations locally weighted regression fitted values 131
* are computed at points in X which are spaced, roughly, DELTA 132
* apart; then the fitted values at the remaining points are 133
* computed using linear interpolation. The first locally 134
* weighted regression (l.w.r.) computation is carried out at 135
* X(1) and the last is carried out at X(N). Suppose the 136
* l.w.r. computation is carried out at X(I). If X(I+1) is 137
* greater than or equal to X(I)+DELTA, the next l.w.r. 138
* computation is carried out at X(I+1). If X(I+1) is less 139
* than X(I)+DELTA, the next l.w.r. computation is carried out 140
* at the largest X(J) which is greater than or equal to X(I) 141
* but is not greater than X(I)+DELTA. Then the fitted values 142
* for X(K) between X(I) and X(J), if there are any, are 143
* computed by linear interpolation of the fitted values at 144
* X(I) and X(J). If N is less than 100 then DELTA can be set 145
* to 0.0 since the computation time will not be too great. 146
* For larger N it is typically not necessary to carry out the 147
* l.w.r. computation for all points, so that much computation 148
* time can be saved by taking DELTA to be greater than 0.0. 149
* If DELTA = Range (X)/k then, if the values in X were 150
* uniformly scattered over the range, the full l.w.r. 151
* computation would be carried out at approximately k points. 152
* Taking k to be 50 often works well. 153
* 154
* Method 155
* 156
* The fitted values are computed by using the nearest neighbor 157
* routine and robust locally weighted regression of degree 1 158
* with the tricube weight function. A few additional features 159
* have been added. Suppose r is FN truncated to an integer. 160
* Let h be the distance to the r-th nearest neighbor 161
* from X(I). All points within h of X(I) are used. Thus if 162
* the r-th nearest neighbor is exactly the same distance as 163

8

* other points, more than r points can possibly be used for 164
* the smooth at X(I). There are two cases where robust 165
* locally weighted regression of degree 0 is actually used at 166
* X(I). One case occurs when h is 0.0. The second case 167
* occurs when the weighted standard error of the X(I) with 168
* respect to the weights w(j) is less than .001 times the 169
* range of the X(I), where w(j) is the weight assigned to the 170
* j-th point of X (the tricube weight times the robustness 171
* weight) divided by the sum of all of the weights. Finally, 172
* if the w(j) are all zero for the smooth at X(I), the fitted 173
* value is taken to be Y(I). 174
* 175
* 176
* 177
* 178
* subroutine lowess(x,y,n,f,nsteps,delta,ys,rw,res) 179
* real x(n),y(n),ys(n),rw(n),res(n) 180
* logical ok 181
* if (n<2){ ys(1) = y(1); return } 182
* ns = max0(min0(ifix(f*float(n)),n),2) # at least two, at most n points 183
* for(iter=1; iter<=nsteps+1; iter=iter+1){ # robustness iterations 184
* nleft = 1; nright = ns 185
* last = 0 # index of prev estimated point 186
* i = 1 # index of current point 187
* repeat{ 188
* while(nright<n){ 189
* # move nleft, nright to right if radius decreases 190
* d1 = x(i)-x(nleft) 191
* d2 = x(nright+1)-x(i) 192
* # if d1<=d2 with x(nright+1)==x(nright), lowest fixes 193
* if (d1<=d2) break 194
* # radius will not decrease by move right 195
* nleft = nleft+1 196
* nright = nright+1 197
* } 198
* call lowest(x,y,n,x(i),ys(i),nleft,nright,res,iter>1,rw,ok) 199
* # fitted value at x(i) 200
* if (!ok) ys(i) = y(i) 201
* # all weights zero - copy over value (all rw==0) 202
* if (last<i-1) { # skipped points -- interpolate 203
* denom = x(i)-x(last) # non-zero - proof? 204
* for(j=last+1; j<i; j=j+1){ 205
* alpha = (x(j)-x(last))/denom 206
* ys(j) = alpha*ys(i)+(1.0-alpha)*ys(last) 207
* } 208
* } 209
* last = i # last point actually estimated 210
* cut = x(last)+delta # x coord of close points 211
* for(i=last+1; i<=n; i=i+1){ # find close points 212
* if (x(i)>cut) break # i one beyond last pt within cut 213
* if(x(i)==x(last)){ # exact match in x 214
* ys(i) = ys(last) 215
* last = i 216
* } 217
* } 218
* i=max0(last+1,i-1) 219
* # back 1 point so interpolation within delta, but always go forward 220

9

* } until(last>=n) 221
* do i = 1,n # residuals 222
* res(i) = y(i)-ys(i) 223
* if (iter>nsteps) break # compute robustness weights except last time 224
* do i = 1,n 225
* rw(i) = abs(res(i)) 226
* call sort(rw,n) 227
* m1 = 1+n/2; m2 = n-m1+1 228
* cmad = 3.0*(rw(m1)+rw(m2)) # 6 median abs resid 229
* c9 = .999*cmad; c1 = .001*cmad 230
* do i = 1,n { 231
* r = abs(res(i)) 232
* if(r<=c1) rw(i)=1. # near 0, avoid underflow 233
* else if(r>c9) rw(i)=0. # near 1, avoid underflow 234
* else rw(i) = (1.0-(r/cmad)**2)**2 235
* } 236
* } 237
* return 238
* end 239
* 240
* 241
* 242
* 243
* 244
* LOWEST 245
* 246
* 247
* Calling sequence 248
* 249
* CALL LOWEST(X,Y,N,XS,YS,NLEFT,NRIGHT,W,USERW,RW,OK) 250
* 251
* Purpose 252
* 253
* LOWEST is a support routine for LOWESS and ordinarily will 254
* not be called by the user. The fitted value, YS, is 255
* computed at the value, XS, of the horizontal axis. 256
* Robustness weights, RW, can be employed in computing the 257
* fit. 258
* 259
* Argument description 260
* 261
* 262
* X = Input; abscissas of the points on the 263
* scatterplot; the values in X must be ordered 264
* from smallest to largest. 265
* Y = Input; ordinates of the points on the 266
* scatterplot. 267
* N = Input; dimension of X,Y,W, and RW. 268
* XS = Input; value of the horizontal axis at which the 269
* smooth is computed. 270
* YS = Output; fitted value at XS. 271
* NLEFT = Input; index of the first point which should be 272
* considered in computing the fitted value. 273
* NRIGHT = Input; index of the last point which should be 274
* considered in computing the fitted value. 275
* W = Output; W(I) is the weight for Y(I) used in the 276
* expression for YS, which is the sum from 277

10

* I = NLEFT to NRIGHT of W(I)*Y(I); W(I) is 278
* defined only at locations NLEFT to NRIGHT. 279
* USERW = Input; logical variable; if USERW is .TRUE., a 280
* robust fit is carried out using the weights in 281
* RW; if USERW is .FALSE., the values in RW are 282
* not used. 283
* RW = Input; robustness weights. 284
* OK = Output; logical variable; if the weights for the 285
* smooth are all 0.0, the fitted value, YS, is not 286
* computed and OK is set equal to .FALSE.; if the 287
* fitted value is computed OK is set equal to 288
* 289
* 290
* Method 291
* 292
* The smooth at XS is computed using (robust) locally weighted 293
* regression of degree 1. The tricube weight function is used 294
* with h equal to the maximum of XS-X(NLEFT) and X(NRIGHT)-XS. 295
* Two cases where the program reverts to locally weighted 296
* regression of degree 0 are described in the documentation 297
* for LOWESS. 298
* 299
* 300
* 301
* 302
* subroutine lowest(x,y,n,xs,ys,nleft,nright,w,userw,rw,ok) 303
* real x(n),y(n),w(n),rw(n) 304
* logical userw,ok 305
* range = x(n)-x(1) 306
* h = amax1(xs-x(nleft),x(nright)-xs) 307
* h9 = .999*h 308
* h1 = .001*h 309
* a = 0.0 # sum of weights 310
* for(j=nleft; j<=n; j=j+1){ # compute weights (pick up all ties on right) 311
* w(j)=0. 312
* r = abs(x(j)-xs) 313
* if (r<=h9) { # small enough for non-zero weight 314
* if (r>h1) w(j) = (1.0-(r/h)**3)**3 315
* else w(j) = 1. 316
* if (userw) w(j) = rw(j)*w(j) 317
* a = a+w(j) 318
* } 319
* else if(x(j)>xs)break # get out at first zero wt on right 320
* } 321
* nrt=j-1 # rightmost pt (may be greater than nright because of ties) 322
* if (a<=0.0) ok = FALSE 323
* else { # weighted least squares 324
* ok = TRUE 325
* do j = nleft,nrt 326
* w(j) = w(j)/a # make sum of w(j) == 1 327
* if (h>0.) { # use linear fit 328
* a = 0.0 329
* do j = nleft,nrt 330
* a = a+w(j)*x(j) # weighted center of x values 331
* b = xs-a 332
* c = 0.0 333
* do j = nleft,nrt 334

11

* c = c+w(j)*(x(j)-a)**2 335
* if(sqrt(c)>.001*range) { 336
* # points are spread out enough to compute slope 337
* b = b/c 338
* do j = nleft,nrt 339
* w(j) = w(j)*(1.0+b*(x(j)-a)) 340
* } 341
* } 342
* ys = 0.0 343
* do j = nleft,nrt 344
* ys = ys+w(j)*y(j) 345
* } 346
* return 347
* end 348
* 349
* 350
* 351
c test driver for lowess 352
c for expected output, see introduction 353
 double precision x(20), y(20), ys(20), rw(20), res(20) 354
 data x /1,2,3,4,5,10*6,8,10,12,14,50/ 355
 data y /18,2,15,6,10,4,16,11,7,3,14,17,20,12,9,13,1,8,5,19/ 356
 call lowess(x,y,20,.25,0,0.,ys,rw,res) 357
 write(6,*) ys 358
 call lowess(x,y,20,.25,0,3.,ys,rw,res) 359
 write(6,*) ys 360
 call lowess(x,y,20,.25,2,0.,ys,rw,res) 361
 write(6,*) ys 362
 end 363
c** 364
c Fortran output from ratfor 365
c 366
 subroutine lowess(x, y, n, f, nsteps, delta, ys, rw, res) 367
 integer n, nsteps 368
 double precision x(n), y(n), f, delta, ys(n), rw(n), res(n) 369
 integer nright, i, j, iter, last, mid(2), ns, nleft 370
 double precision cut, cmad, r, d1, d2 371
 double precision c1, c9, alpha, denom, dabs 372
 logical ok 373
 if (n .ge. 2) goto 1 374
 ys(1) = y(1) 375
 return 376
c at least two, at most n points 377
 1 ns = max(min(int(f*dble(n)), n), 2) 378
 iter = 1 379
 goto 3 380
 2 iter = iter+1 381
 3 if (iter .gt. nsteps+1) goto 22 382
c robustness iterations 383
 nleft = 1 384
 nright = ns 385
c index of prev estimated point 386
 last = 0 387
c index of current point 388
 i = 1 389
 4 if (nright .ge. n) goto 5 390
c move nleft, nright to right if radius decreases 391

12

 d1 = x(i)-x(nleft) 392
c if d1<=d2 with x(nright+1)==x(nright), lowest fixes 393
 d2 = x(nright+1)-x(i) 394
 if (d1 .le. d2) goto 5 395
c radius will not decrease by move right 396
 nleft = nleft+1 397
 nright = nright+1 398
 goto 4 399
c fitted value at x(i) 400
 5 call lowest(x, y, n, x(i), ys(i), nleft, nright, res, iter 401
 + .gt. 1, rw, ok) 402
 if (.not. ok) ys(i) = y(i) 403
c all weights zero - copy over value (all rw==0) 404
 if (last .ge. i-1) goto 9 405
 denom = x(i)-x(last) 406
c skipped points -- interpolate 407
c non-zero - proof? 408
 j = last+1 409
 goto 7 410
 6 j = j+1 411
 7 if (j .ge. i) goto 8 412
 alpha = (x(j)-x(last))/denom 413
 ys(j) = alpha*ys(i)+(1.D0-alpha)*ys(last) 414
 goto 6 415
 8 continue 416
c last point actually estimated 417
 9 last = i 418
c x coord of close points 419
 cut = x(last)+delta 420
 i = last+1 421
 goto 11 422
 10 i = i+1 423
 11 if (i .gt. n) goto 13 424
c find close points 425
 if (x(i) .gt. cut) goto 13 426
c i one beyond last pt within cut 427
 if (x(i) .ne. x(last)) goto 12 428
 ys(i) = ys(last) 429
c exact match in x 430
 last = i 431
 12 continue 432
 goto 10 433
c back 1 point so interpolation within delta, but always go forward 434
 13 i = max(last+1, i-1) 435
 14 if (last .lt. n) goto 4 436
c residuals 437
 do 15 i = 1, n 438
 res(i) = y(i)-ys(i) 439
 15 continue 440
 if (iter .gt. nsteps) goto 22 441
c compute robustness weights except last time 442
 do 16 i = 1, n 443
 rw(i) = dabs(res(i)) 444
 16 continue 445
 call ssort(rw,n) 446
 mid(1) = n/2+1 447
 mid(2) = n-mid(1)+1 448

13

c 6 median abs resid 449
 cmad = 3.D0*(rw(mid(1))+rw(mid(2))) 450
 c9 = .999999D0*cmad 451
 c1 = .000001D0*cmad 452
 do 21 i = 1, n 453
 r = dabs(res(i)) 454
 if (r .gt. c1) goto 17 455
 rw(i) = 1.D0 456
c near 0, avoid underflow 457
 goto 20 458
 17 if (r .le. c9) goto 18 459
 rw(i) = 0.D0 460
c near 1, avoid underflow 461
 goto 19 462
 18 rw(i) = (1.D0-(r/cmad)**2.D0)**2.D0 463
 19 continue 464
 20 continue 465
 21 continue 466
 goto 2 467
 22 return 468
 end 469
 470
 471
 subroutine lowest(x, y, n, xs, ys, nleft, nright, w, userw 472
 +, rw, ok) 473
 integer n 474
 integer nleft, nright 475
 double precision x(n), y(n), xs, ys, w(n), rw(n) 476
 logical userw, ok 477
 integer nrt, j 478
 double precision dabs, a, b, c, h, r 479
 double precision h1, dsqrt, h9, max, range 480
 range = x(n)-x(1) 481
 h = max(xs-x(nleft), x(nright)-xs) 482
 h9 = .999999D0*h 483
 h1 = .000001D0*h 484
c sum of weights 485
 a = 0.D0 486
 j = nleft 487
 goto 2 488
 1 j = j+1 489
 2 if (j .gt. n) goto 7 490
c compute weights (pick up all ties on right) 491
 w(j) = 0.D0 492
 r = dabs(x(j)-xs) 493
 if (r .gt. h9) goto 5 494
 if (r .le. h1) goto 3 495
 w(j) = (1.D0-(r/h)**3.D0)**3.D0 496
c small enough for non-zero weight 497
 goto 4 498
 3 w(j) = 1.D0 499
 4 if (userw) w(j) = rw(j)*w(j) 500
 a = a+w(j) 501
 goto 6 502
 5 if (x(j) .gt. xs) goto 7 503
c get out at first zero wt on right 504
 6 continue 505

14

 goto 1 506
c rightmost pt (may be greater than nright because of ties) 507
 7 nrt = j-1 508
 if (a .gt. 0.D0) goto 8 509
 ok = .false. 510
 goto 16 511
 8 ok = .true. 512
c weighted least squares 513
 do 9 j = nleft, nrt 514
c make sum of w(j) == 1 515
 w(j) = w(j)/a 516
 9 continue 517
 if (h .le. 0.D0) goto 14 518
 a = 0.D0 519
c use linear fit 520
 do 10 j = nleft, nrt 521
c weighted center of x values 522
 a = a+w(j)*x(j) 523
 10 continue 524
 b = xs-a 525
 c = 0.D0 526
 do 11 j = nleft, nrt 527
 c = c+w(j)*(x(j)-a)**2 528
 11 continue 529
 if (dsqrt(c) .le. .0000001D0*range) goto 13 530
 b = b/c 531
c points are spread out enough to compute slope 532
 do 12 j = nleft, nrt 533
 w(j) = w(j)*(b*(x(j)-a)+1.D0) 534
 12 continue 535
 13 continue 536
 14 ys = 0.D0 537
 do 15 j = nleft, nrt 538
 ys = ys+w(j)*y(j) 539
 15 continue 540
 16 return 541
 end 542
 543
 544
 subroutine ssort(a,n) 545
 546
C Sorting by Hoare method, C.A.C.M. (1961) 321, modified by Singleton 547
C C.A.C.M. (1969) 185. 548
 double precision a(n) 549
 integer iu(16), il(16) 550
 integer p 551
 552
 i =1 553
 j = n 554
 m = 1 555
 5 if (i.ge.j) goto 70 556
c first order a(i),a(j),a((i+j)/2), and use median to split the data 557
 10 k=i 558
 ij=(i+j)/2 559
 t=a(ij) 560
 if(a(i) .le. t) goto 20 561
 a(ij)=a(i) 562

15

 a(i)=t 563
 t=a(ij) 564
 20 l=j 565
 if(a(j).ge.t) goto 40 566
 a(ij)=a(j) 567
 a(j)=t 568
 t=a(ij) 569
 if(a(i).le.t) goto 40 570
 a(ij)=a(i) 571
 a(i)=t 572
 t=a(ij) 573
 goto 40 574
 30 a(l)=a(k) 575
 a(k)=tt 576
 40 l=l-1 577
 if(a(l) .gt. t) goto 40 578
 tt=a(l) 579
c split the data into a(i to l) .lt. t, a(k to j) .gt. t 580
 50 k=k+1 581
 if(a(k) .lt. t) goto 50 582
 if(k .le. l) goto 30 583
 p=m 584
 m=m+1 585
c split the larger of the segments 586
 if (l-i .le. j-k) goto 60 587
 il(p)=i 588
 iu(p)=l 589
 i=k 590
 goto 80 591
 60 il(p)=k 592
 iu(p)=j 593
 j=l 594
 goto 80 595
 70 m=m-1 596
 if(m .eq. 0) return 597
 i =il(m) 598
 j=iu(m) 599
c short sections are sorted by bubble sort 600
 80 if (j-i .gt. 10) goto 10 601
 if (i .eq. 1) goto 5 602
 i=i-1 603
 90 i=i+1 604
 if(i .eq. j) goto 70 605
 t=a(i+1) 606
 if(a(i) .le. t) goto 90 607
 k=i 608
 100 a(k+1)=a(k) 609
 k=k-1 610
 if(t .lt. a(k)) goto 100 611
 a(k+1)=t 612
 goto 90 613
 614
 end 615

