Locally Weighted Linear Regression in LOWESS: Cleveland's Method

R.E. Deakin ${ }^{1}$ and M.N. Hunter ${ }^{2}$
${ }^{1}$ Dunsborough, WA, 6281, Australia; ${ }^{2}$ Maribyrnong, VIC, 3032, Australia
email: randm.deakin@gmail.com
12-Jun-2020

Abstract

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm introduced by William S. Cleveland in 1979. In 1981 Cleveland made available FORTRAN routines LOWESS and LOWEST from the Computing Information Library at Bell Laboratories. These are reproduced in the Appendix. The routine LOWEST performs a locally weighted least squares linear regression on a set of data pairs $\left(x_{j}, y_{j}\right) \quad j=1,2,3, \ldots, q$ where the weights are functions of the distances r_{j} from the point to be 'smoothed' $\left(x_{s}, y_{s}\right)$. The routine returns the estimate $\hat{y}_{s}=\beta_{0}+\beta_{1} x_{s}$ where β_{0}, β_{1} are the parameters of a line of best fit where the x_{j} are considered error-free.

Routine LOWEST uses a clever modification of the usual weighted least squares regression which will be explained below.

Introduction

Lowess (locally weighted scatterplot smoothing) is a robust weighted regression smoothing algorithm proposed by William S. Cleveland (Cleveland 1979). For n data pairs $\left(x_{i}, y_{i}\right) i=1,2, \ldots, n$ where the x values are considered as independent and error-free and the y-values as measurements subject to error, the algorithm assumes the n points are ordered from smallest to largest x-value and selects a smoothing point, say $\left(x_{s}, y_{s}\right) s=1,2, \ldots, n$ and its q nearest neighbours, noting that the smoothing point $\left(x_{s}, y_{s}\right)$ is a neighbour of itself. These q nearest neighbours are a subset of the n data pairs and the algorithm fits a polynomial to the subset that is used to calculate the estimate $\left(x_{s}, \hat{y}_{s}\right)$ noting that the 'hat' symbol ($\left.\wedge\right)$ denotes an estimate of a quantity. Cleveland (1979, p. 833) suggests that polynomials of degree 1 : $y=\beta_{0}+\beta_{1} x$ (a straight line) or degree 2: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ (a quadratic curve) are sufficient for most purposes and notes that the polynomial of degree 1 "should almost always provide adequate smoothed points and computational ease." In this paper we only consider polynomials of degree 1. Now, since only two points are required to define a straight line, and q will always be greater than 2 in practice, least squares is used to determine estimates of the parameters of the line of best fit with local weights $0 \leq w_{j} \leq 1$ for $j=1,2, \ldots, q$ as functions of the distances from the smoothing point $\left(x_{s}, y_{s}\right)$ to each of the q nearest neighbours. [The weight function most often used in lowess smoothing is known as tricube (more about this later) and yields local weights that decrease from 1 at the smoothing point to 0 at the furthest of the q points.] After computing the estimate \hat{y}_{s} at the smoothing point from $\hat{y}_{s}=\beta_{0}+\beta_{1} x_{s}$ (using locally weighted linear regression) the smoothing point is increased by one, i.e., $s=s+1$ and the subset of q nearest neighbours determined (which may be the same subset as for the previous smoothing point) and the next estimate computed. This process is repeated until $s=n$

Least Squares Linear Regression

The y-values in the $\left(x_{j}, y_{j}\right)$ data pairs are assumed to be measurements subject to error and if blunders and systematic errors are eliminated, the remaining random errors can be allowed for by the application of small corrections known as residuals. Hence, we write

$$
\begin{equation*}
\text { measurement }+ \text { residual }=\text { best estimate } \tag{1}
\end{equation*}
$$

Also, a quantity that is being measured has both a true value (forever unknown) and an estimated value (the best estimate) and after removing blunders and systematic errors from the measurements leaving only random errors of measurements, we may write

$$
\text { measurement }=\text { true value }+ \text { random error }
$$

Often, a measurement may be the mean of several measurements or measurements may be obtained from different types of equipment or measurement processes and they may be of varying precision. To allow for this we may weight our measurements, where a weight is a numerical value that reflects the degree of confidence we have in the measurement. The greater the weight the more confident we are in the particular measurement. A weight is often defined to be inversely proportional to the variance of a measurement where variance is a statistical measure of precision. Precise measurements have a small variance.

To solve for the values of the two parameters β_{0}, β_{1} we write q observation equations having the general form of (1)

$$
\begin{equation*}
y_{j}+v_{j}=\hat{y}_{j} \quad \text { or } \quad v_{j}=\hat{y}_{j}-y_{j} \tag{2}
\end{equation*}
$$

where v_{j} denotes the residual of the $j^{\text {th }}$ point and \hat{y}_{j} denotes the best estimate.
Now the least squares principle is that the best estimates are those that make the sum of the squares of the residuals, multiplied by their weights, a minimum. To achieve this, write the least squares function φ as

$$
\varphi=w_{1} v_{1}^{2}+w_{2} v_{2}^{2}+\cdots+w_{n} v_{n}^{2}=\sum w_{j} v_{j}^{2}=\sum w_{j}\left(\hat{y}_{j}-y_{j}\right)^{2}
$$

where the following summation notations are equivalent: $\sum v_{j}=\sum_{j} v_{j}=\sum_{j=1}^{q} v_{j}=v_{1}+v_{2}+v_{3}+\cdots+v_{q}$
And since $\hat{y}_{j}=\beta_{0}+\beta_{1} x_{j}$

$$
\varphi=\varphi\left(\beta_{0}, \beta_{1}\right)=\sum w_{j}\left(\beta_{0}+\beta_{1} x_{j}-y_{j}\right)^{2}
$$

$\varphi\left(\beta_{0}, \beta_{1}\right)$ will have a minimum value when the partial derivatives $\frac{\partial \varphi}{\partial \beta_{0}}, \frac{\partial \varphi}{\partial \beta_{1}}$ both equal zero, that is when

$$
\begin{align*}
& \frac{\partial \varphi}{\partial \beta_{0}}=2 \sum w_{j}\left(\beta_{0}+\beta_{1} x_{j}-y_{j}\right)=0 \tag{3}\\
& \frac{\partial \varphi}{\partial \beta_{1}}=2 \sum w_{j} x_{j}\left(\beta_{0}+\beta_{1} x_{j}-y_{j}\right)=0
\end{align*}
$$

and cancelling the 2 's in (3) and rearranging gives two normal equations

$$
\begin{align*}
\left(\sum w_{j}\right) \beta_{0}+\left(\sum w_{j} x_{j}\right) \beta_{1} & =\sum w_{j} y_{j} \\
\left(\sum w_{j} x_{j}\right) \beta_{0}+\left(\sum w_{j} x_{j}^{2}\right) \beta_{1} & =\sum w_{j} x_{j} y_{j} \tag{4}
\end{align*}
$$

The solutions of the normal equations (4) give

$$
\begin{equation*}
\beta_{0}=\frac{\sum w_{j} x_{j}^{2} \sum w_{j} y_{j}-\sum w_{j} x_{j} \sum w_{j} x_{j} y_{j}}{\sum w_{j} \sum w_{j} x_{j}^{2}-\left(\sum w_{j} x_{j}\right)^{2}} \quad \beta_{1}=\frac{\sum w_{j} \sum w_{j} x_{j} y_{j}-\sum w_{j} x_{j} \sum w_{j} y_{j}}{\sum w_{j} \sum w_{j} x_{j}^{2}-\left(\sum w_{j} x_{j}\right)^{2}} \tag{5}
\end{equation*}
$$

Now having determined β_{0}, β_{1} the estimates are $\hat{y}_{j}=\beta_{0}+\beta_{1} x_{j}$. This is the typical method least squares linear regression.

Cleveland's Method

Cleveland (1981) gave a very brief outline of his method of scatterplot smoothing and then gave instructions on obtaining FORTRAN routines LOWESS and LOWEST from the Computing Information Library at Bell Laboratories. The routine LOWESS, which is directly called by the user calls a support routine LOWEST and it is withing this support routine that a very efficient and clever weighted least squares regression is employed. The documentation and Ratfor ${ }^{1}$ versions of LOWESS and LOWEST are shown in the Appendix and it is subroutine LOWEST that actually computes the least squares estimate at the smoothing point.

Consider the normal equations (4) for a weighted least squares solution for the parameters β_{0}, β_{1} of the regression line (line of best fit) $y=\beta_{0}+\beta_{1} x$ for the data pairs $\left(x_{j}, y_{j}\right)$ with weights w_{j} for $j=1,2,3, \ldots, q$.

These equations may be written in terms of normalized weights w_{j}^{*} and reduced coordinates \bar{x}_{j} defined as

$$
\begin{align*}
& w_{j}^{*}=\frac{w_{j}}{\sum w_{j}} \tag{6}\\
& \bar{x}_{j}=x_{j}-g \tag{7}
\end{align*}
$$

where $g=\frac{\sum w_{j}^{*} x_{j}}{\sum w_{j}^{*}}$ is a weighted mean, and the normal equations (4) can be written as

$$
\begin{align*}
\left(\sum w_{j}^{*}\right) \beta_{0}+\left(\sum w_{j}^{*} \bar{x}_{j}\right) \beta_{1} & =\sum w_{j}^{*} y_{j} \tag{8}\\
\left(\sum w_{j}^{*} \bar{x}_{j}\right) \beta_{0}+\left(\sum w_{j}^{*} x_{j}^{2}\right) \beta_{1} & =\sum w_{j}^{*} \bar{x}_{j} y_{j}
\end{align*}
$$

We now show that (i) $\sum w_{j}^{*}=1$ and (ii) $\sum w_{j}^{*} \bar{x}_{j}=0$.
(i) Since $w_{j}^{*}=\frac{w_{j}}{\sum w_{j}}$ then $\sum w_{j}^{*}=\frac{w_{1}}{\sum w_{j}}+\frac{w_{2}}{\sum w_{j}}+\cdots+\frac{w_{n}}{\sum w_{j}}=\frac{w_{1}+w_{2}+\cdots+w_{q}}{\sum w_{j}}=\frac{\sum w_{j}}{\sum w_{j}}=1$
(ii) Since $g=\frac{\sum w_{j}^{*} x_{j}}{\sum w_{j}^{*}}$ and $\sum w_{j}^{*}=1$ then $g=\sum w_{j}^{*} x_{j}$. Also, $w_{j}^{*} \bar{x}_{j}=w_{j}^{*}\left(x_{j}-g\right)=w_{j}^{*} x_{j}-w_{j}^{*} g$.

$$
\text { So } \sum w_{j}^{*} \bar{x}_{j}=\sum w_{j}^{*} x_{j}-w_{j}^{*} g=\sum w_{j}^{*} x_{j}-g \sum w_{j}^{*}=g-g=0
$$

Using these results in (8) gives the solutions

$$
\begin{equation*}
\beta_{0}=\sum w_{j}^{*} y_{j} \text { and } \beta_{1}=\frac{\sum w_{j}^{*} \bar{x}_{j} y_{j}}{\sum w_{j}^{*} \bar{x}_{j}^{2}} \tag{9}
\end{equation*}
$$

For the smoothing point $\left(x_{s}, y_{s}\right)$ the estimate $\hat{y}_{s}=\beta_{0}+\beta_{1} \bar{x}_{s}$ and using (9) we may write

$$
\begin{equation*}
\hat{y}_{s}=\sum w_{j}^{*} y_{j}+\bar{x}_{s} \frac{\sum w_{j}^{*} \bar{x}_{j} y_{j}}{\sum w_{j}^{*} \bar{x}_{j}^{2}}=\sum w_{j}^{*} y_{j}+\left(\frac{\bar{x}_{s}}{\sum w_{j}^{*} \bar{x}_{j}^{2}}\right) \sum w_{j}^{*} \bar{x}_{j} y_{j} \tag{10}
\end{equation*}
$$

Let $b=\frac{\bar{x}_{s}}{\sum w_{j}^{*} \bar{x}_{j}^{2}}$ then (10) becomes

[^0]\[

$$
\begin{align*}
\hat{y}_{s} & =\sum w_{j}^{*} y_{j}+b \sum w_{j}^{*} \bar{x}_{j} y_{j} \\
& =w_{1}^{*} y_{1}+w_{2}^{*} y_{2}+\cdots+w_{q}^{*} y_{q}+b\left(w_{1}^{*} \bar{x}_{1} y_{1}+w_{2}^{*} \bar{x}_{2} y_{2}+\cdots+w_{q}^{*} \bar{x}_{q} y_{q}\right) \\
& =y_{1}\left(w_{1}^{*}+b w_{1}^{*} \bar{x}_{1}\right)+y_{2}\left(w_{2}^{*}+b w_{2}^{*} \bar{x}_{2}\right)+\cdots+y_{q}\left(w_{q}^{*}+b w_{q}^{*} \bar{x}_{q}\right) \\
& =w_{1}^{*}\left(1+b \bar{x}_{1}\right) y_{1}+w_{2}^{*}\left(1+b \bar{x}_{2}\right) y_{2}+\cdots+w_{q}^{*}\left(1+b \bar{x}_{q}\right) y_{q} \tag{11}
\end{align*}
$$
\]

And with the substitution $W_{j}=w_{j}^{*}\left(1+b \bar{x}_{j}\right)$ in (11) the estimate at the smoothing point $\left(x_{s}, y_{s}\right)$ is given by

$$
\begin{equation*}
\hat{y}_{s}=W_{1} y_{1}+W_{2} y_{2}+\cdots+W_{q} y_{q}=\sum_{j=1}^{q} W_{j} y_{j} \tag{12}
\end{equation*}
$$

You can see the application of Cleveland's least squares method in the Ratfor code for the FORTRAN subroutine LOWEST, shown in the Appendix lines 245 to 348 . In particular (i) local weights are calculated and their sum obtained in lines 311-321; weights are normalized in a do loop in lines 326-7; a weighted mean is calculated in a do loop in lines 329-331; a reduced x-coordinate for the smoothing point is calculated in line 332; the factor $b=\frac{\bar{x}_{s}}{\sum w_{j}^{*} \bar{x}_{j}^{2}}$ is calculated in line 338 ; the modified weights $W_{j}=w_{j}^{*}\left(1+b \bar{x}_{j}\right)$ are calculated in a do loop lines 339-340; and finally the estimate at the smoothing point is calculated from (12) in lines 343-345.

The local weights in subroutine LOWEST are computed from a tricube weight function $w_{j}=\left(1-\left(\frac{r_{j}}{h}\right)^{3}\right)^{3}$
where r_{j} is the absolute vale of the x-distance from the smoothing point to the $j^{\text {th }}$ nearest neighbour and $h=\max \left(r_{j}\right)$. The weights vary from 1 at the smoothing point where $r_{j}=0$ to zero at the point furthest from the smoothing point where $r_{j}=h$. The calculation of these local weights are shown in lines 307-321.

References

Cleveland, W.S., (1979), 'Robust locally weighted regression and smoothing scatterplots', Journal of the American Statistical Association, Vol. 74, No. 368 (Dec., 1979), pp. 829-836 http://home.eng.iastate.edu/~shermanp/STAT447/Lectures/Cleveland\ paper.pdf [accessed 23 Sep 2019]

Cleveland, W.S., (1981), 'LOWESS: A program for smoothing scatterplots by robust locally weighted regression', The American Statistician, Vol. 35, No. 1 (Feb., 1981), p. 54

Appendix

FORTRAN program LOWESS

https://github.com/andreas-h/pyloess/blob/master/src/lowess.f

```
wsc@research.bell-labs.com Mon Dec 30 16:55 EST 1985
W. S. Cleveland
* Bell Laboratories
Murray Hill NJ 07974
*
* outline of this file:
* lines 1-72 introduction
*
*
*
*

\begin{tabular}{|c|c|c|}
\hline 107 & * & most purposes. \\
\hline 108 & * & DELTA = input; nonnegative parameter which may be used \\
\hline 109 & * & to save computations; if N is less than 100, set \\
\hline 110 & * & DELTA equal to 0.0; if N is greater than 100 you \\
\hline 111 & * & should find out how DELTA works by reading the \\
\hline 112 & * & additional instructions section. \\
\hline 113 & * & YS = Output; fitted values; YS(I) is the fitted value \\
\hline 114 & * & at \(\mathrm{X}(\mathrm{I})\); to summarize the scatterplot, YS(I) \\
\hline 115 & * & should be plotted against X(I) \\
\hline 116 & * & RW = Output; robustness weights; RW(I) is the weight \\
\hline 117 & * & given to the point (X I ), Y(I)) ; if NSTEPS \(=0\), \\
\hline 118 & * & RW is not used. \\
\hline 119 & * & RES \(=\) Output; residuals; RES(I) = Y(I)-YS(I). \\
\hline 120 & * & \\
\hline 121 & * & \\
\hline 122 & * & Other programs called \\
\hline 123 & * & \\
\hline 124 & * & LOWEST \\
\hline 125 & * & SSORT \\
\hline 126 & * & \\
\hline 127 & * & Additional instructions \\
\hline 128 & * & \\
\hline 129 & * & DELTA can be used to save computations. Very roughly the \\
\hline 130 & * & algorithm is this: on the initial fit and on each of the \\
\hline 131 & * & NSTEPS iterations locally weighted regression fitted values \\
\hline 132 & * & are computed at points in X which are spaced, roughly, DELTA \\
\hline 133 & * & apart; then the fitted values at the remaining points are \\
\hline 134 & * & computed using linear interpolation. The first locally \\
\hline 135 & * & weighted regression (l.w.r.) computation is carried out at \\
\hline 136 & * & \(X(1)\) and the last is carried out at \(\mathrm{X}(\mathrm{N})\). Suppose the \\
\hline 137 & * & l.w.r. computation is carried out at \(\mathrm{X}(\mathrm{I})\). If \(\mathrm{X}(\mathrm{I}+1)\) is \\
\hline 138 & * & greater than or equal to \(X(I)+D E L T A, ~ t h e ~ n e x t ~ l . w . r . ~\) \\
\hline 139 & * & computation is carried out at \(\mathrm{X}(\mathrm{I}+1)\). If \(\mathrm{X}(\mathrm{I}+1)\) is less \\
\hline 140 & * & than \(\mathrm{X}(\mathrm{I})+\) DELTA, the next l.w.r. computation is carried out \\
\hline 141 & * & at the largest \(\mathrm{X}(\mathrm{J})\) which is greater than or equal to \(\mathrm{X}(\mathrm{I})\) \\
\hline 142 & * & but is not greater than X(I)+DELTA. Then the fitted values \\
\hline 143 & * & for \(\mathrm{X}(\mathrm{K})\) between \(\mathrm{X}(\mathrm{I})\) and \(\mathrm{X}(\mathrm{J})\), if there are any, are \\
\hline 144 & * & computed by linear interpolation of the fitted values at \\
\hline 145 & * & \(\mathrm{X}(\mathrm{I})\) and \(\mathrm{X}(\mathrm{J})\). If N is less than 100 then DELTA can be set \\
\hline 146 & * & to 0.0 since the computation time will not be too great. \\
\hline 147 & * & For larger N it is typically not necessary to carry out the \\
\hline 148 & * & l.w.r. computation for all points, so that much computation \\
\hline 149 & * & time can be saved by taking DELTA to be greater than 0.0. \\
\hline 150 & * & If DELTA \(=\) Range (X)/k then, if the values in X were \\
\hline 151 & * & uniformly scattered over the range, the full l.w.r. \\
\hline 152 & * & computation would be carried out at approximately k points. \\
\hline 153 & * & Taking k to be 50 often works well. \\
\hline 154 & * & \\
\hline 155 & * & Method \\
\hline 156 & * & \\
\hline 157 & * & The fitted values are computed by using the nearest neighbor \\
\hline 158 & * & routine and robust locally weighted regression of degree 1 \\
\hline 159 & * & with the tricube weight function. A few additional features \\
\hline 160 & * & have been added. Suppose r is FN truncated to an integer. \\
\hline 161 & * & Let \(h\) be the distance to the \(r\)-th nearest neighbor \\
\hline 162 & * & from X(I). All points within \(h\) of \(\mathrm{X}(\mathrm{I})\) are used. Thus if \\
\hline 163 & * & the r-th nearest neighbor is exactly the same distance as \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 164 & * & other points, more than r points can possibly be used for \\
\hline 165 & * & the smooth at \(X(I)\). There are two cases where robust \\
\hline 166 & * & locally weighted regression of degree 0 is actually used at \\
\hline 167 & * & \(X(I)\). One case occurs when \(h\) is 0.0. The second case \\
\hline 168 & * & occurs when the weighted standard error of the \(\mathrm{X}(\mathrm{I})\) with \\
\hline 169 & * & respect to the weights \(\mathrm{w}(\mathrm{j})\) is less than .001 times the \\
\hline 170 & * & range of the \(\mathrm{X}(\mathrm{I})\), where \(\mathrm{w}(\mathrm{j})\) is the weight assigned to the \\
\hline 171 & * & j-th point of X (the tricube weight times the robustness \\
\hline 172 & * & weight) divided by the sum of all of the weights. Finally, \\
\hline 173 & * & if the w(j) are all zero for the smooth at X(I), the fitted \\
\hline 174 & * & value is taken to be Y(I) \\
\hline 175 & * & \\
\hline 176 & * & \\
\hline 177 & * & \\
\hline 178 & * & \\
\hline 179 & * & subroutine lowess( \(\mathrm{x}, \mathrm{y}, \mathrm{n}, \mathrm{f}, \mathrm{nsteps}\), delta, \(\mathrm{ys}, \mathrm{rw}, \mathrm{res}\) ) \\
\hline 180 & * & real \(x(n), y(n), y s(n), r w(n), r e s(n)\) \\
\hline 181 & * & logical ok \\
\hline 182 & * & if ( \(\mathrm{n}<2\) ) \{ ys (1) = y \({ }^{\text {(1) }}\); return \} \\
\hline 183 & * & \(\mathrm{ns}=\max 0(\min 0(\) ifix \((\mathrm{f} * \mathrm{float}(\mathrm{n}) \mathrm{)}, \mathrm{n}), 2) \quad \#\) at least two, at most n points \\
\hline 184 & * & for(iter=1; iter<=nsteps+1; iter=iter+1)\{ \# robustness iterations \\
\hline 185 & * & nleft = 1; nright = ns \\
\hline 186 & * & last \(=0 \quad \#\) index of prev estimated point \\
\hline 187 & * & i \(=1\) \# index of current point \\
\hline 188 & * & repeat\{ \\
\hline 189 & * & while(nright<n) \{ \\
\hline 190 & * & \# move nleft, nright to right if radius decreases \\
\hline 191 & * & d 1 = \(\mathrm{x}(\mathrm{i})-\mathrm{x}(\mathrm{nl} \mathrm{eft})\) \\
\hline 192 & * & d2 = \(x\) (nright+1)-x(i) \\
\hline 193 & * & \# if d1<=d2 with \(x\) (nright+1)==x(nright), lowest fixes \\
\hline 194 & * & if (d1<=d2) break \\
\hline 195 & * & \# radius will not decrease by move right \\
\hline 196 & * & nleft = nleft+1 \\
\hline 197 & * & nright = nright+1 \\
\hline 198 & * & \} \\
\hline 199 & * & call lowest(x,y,n,x(i),ys(i),nleft, nright,res,iter>1,rw,ok) \\
\hline 200 & * & \# fitted value at \(\mathrm{x}(\mathrm{i})\) \\
\hline 201 & * & if (!ok) ys (i) = y \({ }^{\text {(i) }}\) \\
\hline 202 & * & \# all weights zero - copy over value (all rw==0) \\
\hline 203 & * & if (last<i-1) \{ \# skipped points -- interpolate \\
\hline 204 & * & denom \(=x(i)-x\) (last) \# non-zero - proof? \\
\hline 205 & * & for(j=last+1; j<i ; j=j+1) \{ \\
\hline 206 & * & alpha \(=(x(j)-x(l a s t)) /\) denom \\
\hline 207 & * & ys(j) = alpha*ys(i)+(1.0-alpha)*ys(last) \\
\hline 208 & * & \} \\
\hline 209 & * & \} \\
\hline 210 & * & last = i \# last point actually estimated \\
\hline 211 & * & cut = x(last)+delta \# x coord of close points \\
\hline 212 & * & for(i=last+1; i<=n; i=i+1)\{ \# find close points \\
\hline 213 & * & if (x(i)>cut) break \# i one beyond last pt within cut \\
\hline 214 & * & if (x(i) \(==x\) (last) \()\) ( \# exact match in x \\
\hline 215 & * & ys(i) = ys(last) \\
\hline 216 & * & last = i \\
\hline 217 & * & \} \\
\hline 218 & * & \} \\
\hline 219 & * & i=max0 (last+1,i-1) \\
\hline 220 & & \# back 1 point so interpolation within delta, but always go forward \\
\hline
\end{tabular}
```

* } until(last>=n)
* do i = 1,n \# residuals
res(i) = y(i)-ys(i)
if (iter>nsteps) break \# compute robustness weights except last time
do i = 1,n
rw(i) = abs(res(i))
call sort(rw,n)
m1 = 1+n/2; m2 = n-m1+1
cmad = 3.0*(rw(m1)+rw (m2)) \# 6 median abs resid
c9 = .999*cmad; c1 = .001*cmad
do i = 1,n {
r = abs(res(i))
if(r<=c1) rw(i)=1. \# near 0, avoid underflow
else if(r>c9) rw(i)=0. \# near 1, avoid underflow
else rw(i) = (1.0-(r/cmad)**2)**2
}
}
return
end
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* N scatterplot.
* N = Input; dimension of X,Y,W, and RW.
* XS = Input; value of the horizontal axis at which the
smooth is computed.
YS = Output; fitted value at XS.
NLEFT = Input; index of the first point which should be
considered in computing the fitted value.
NRIGHT = Input; index of the last point which should be
considered in computing the fitted value.
W = Output; W(I) is the weight for Y(I) used in the
expression for YS, which is the sum from

```
\begin{tabular}{|c|c|c|}
\hline 278 & * & \(\mathrm{I}=\) NLEFT to NRIGHT of \(\mathrm{W}(\mathrm{I}) * \mathrm{Y}(\mathrm{I})\); \(\mathrm{W}(\mathrm{I})\) is \\
\hline 279 & * & defined only at locations NLEFT to NRIGHT. \\
\hline 280 & * & USERW = Input; logical variable; if USERW is .TRUE., a \\
\hline 281 & * & robust fit is carried out using the weights in \\
\hline 282 & * & RW; if USERW is .FALSE., the values in RW are \\
\hline 283 & * & not used. \\
\hline 284 & * & RW = Input; robustness weights. \\
\hline 285 & * & OK = Output; logical variable; if the weights for the \\
\hline 286 & * & smooth are all 0.0, the fitted value, YS, is not \\
\hline 287 & * & computed and OK is set equal to .FALSE.; if the \\
\hline 288 & * & fitted value is computed OK is set equal to \\
\hline 289 & * & \\
\hline 290 & * & \\
\hline 291 & * & Method \\
\hline 292 & * & \\
\hline 293 & * & The smooth at XS is computed using (robust) locally weighted \\
\hline 294 & * & regression of degree 1. The tricube weight function is used \\
\hline 295 & * & with h equal to the maximum of XS-X(NLEFT) and X (NRIGHT)-XS. \\
\hline 296 & * & Two cases where the program reverts to locally weighted \\
\hline 297 & * & regression of degree 0 are described in the documentation \\
\hline 298 & * & for LOWESS. \\
\hline 299 & * & \\
\hline 300 & * & \\
\hline 301 & * & \\
\hline 302 & * & \\
\hline 303 & * & subroutine lowest(x,y,n,xs,ys,nleft, nright,w,userw, rw,ok) \\
\hline 304 & * & real \(x(n), y(n), w(n), r w(n)\) \\
\hline 305 & * & logical userw,ok \\
\hline 306 & * & range \(=x(n)-x(1)\) \\
\hline 307 & * & \(\mathrm{h}=\operatorname{amax} 1(\mathrm{xs}-\mathrm{x}(\mathrm{nleft}), \mathrm{x}(\mathrm{nright})-\mathrm{xs})\) \\
\hline 308 & * & h9 = . \(999 * \mathrm{~h}\) \\
\hline 309 & * & h1 \(=.001 * h\) \\
\hline 310 & * & \(\mathrm{a}=0.0 \quad \#\) sum of weights \\
\hline 311 & * & for(j=nleft; \(j<=n ; j=j+1)\{\) \# compute weights (pick up all ties on right) \\
\hline 312 & * & \(\mathrm{w}(\mathrm{j})=0\). \\
\hline 313 & * & \(\mathrm{r}=\mathrm{abs}(\mathrm{x}(\mathrm{j})-\mathrm{xs})\) \\
\hline 314 & * & if ( \(\mathrm{r}<=\mathrm{h} 9\) ) \{ \# small enough for non-zero weight \\
\hline 315 & * & if ( \(\mathrm{r}>\mathrm{h} 1\) ) \(\mathrm{w}(\mathrm{j})=(1.0-(\mathrm{r} / \mathrm{h}) * * 3) * * 3\) \\
\hline 316 & * & else \(\quad w(j)=1\). \\
\hline 317 & * & if (userw) w(j) = rw(j)*w(j) \\
\hline 318 & * & \(\mathrm{a}=\mathrm{a}+\mathrm{w}(\mathrm{j})\) \\
\hline 319 & * & \} \\
\hline 320 & * & else if (x(j)>xs)break \# get out at first zero wt on right \\
\hline 321 & * & \} \\
\hline 322 & * & nrt=j-1 \# rightmost pt (may be greater than nright because of ties) \\
\hline 323 & * & if ( \(\mathrm{a}<=0.0\) ) ok = FALSE \\
\hline 324 & * & else \{ \# weighted least squares \\
\hline 325 & * & ok = TRUE \\
\hline 326 & * & do j = nleft, nrt \\
\hline 327 & * & \(w(j)=w(j) / a \quad \#\) make sum of \(w(j)==1\) \\
\hline 328 & * & if (h>0.) \{ \# use linear fit \\
\hline 329 & * & \(\mathrm{a}=0.0\) \\
\hline 330 & * & do \(\mathrm{j}=\) nleft, nrt \\
\hline 331 & * & \(\mathrm{a}=\mathrm{a}+\mathrm{w}(\mathrm{j}) * \mathrm{x}(\mathrm{j})\) \# weighted center of x values \\
\hline 332 & * & \(\mathrm{b}=\mathrm{xs}-\mathrm{a}\) \\
\hline 333 & * & \(c=0.0\) \\
\hline 334 & * & do \(\mathrm{j}=\) nleft, nrt \\
\hline
\end{tabular}
```

* c=c+w(j)*(x(j)-a)**2
* if(sqrt(c)>.001*range) {

points are spread out enough to compute slope

 b = b/c
 do j = nleft,nrt
 w(j) = w(j)*(1.0+b*(x(j)-a))
 }
 }
 ys = 0.0
 do j = nleft,nrt
 ys = ys+w(j)*y(j)
 }
 return
end
*
*
*
c test driver for lowess
c for expected output, see introduction
double precision x(20), y(20), ys(20), rw(20), res(20)
data x / , 2, 3,4,5,10*6,8,10,12,14,50/
data y / 18,2,15,6,10,4,16,11,7,3,14,17,20,12,9,13,1,8,5,19/
call lowess(x,y,20,.25,0,0.,ys,rw,res)
write(6,*) ys
call lowess(x,y,20,.25,0,3.,ys,rw,res)
write(6,*) ys
call lowess(x,y,20,.25,2,0.,ys,rw,res)
write(6,*) ys
end
c**
c Fortran output from ratfor
c
subroutine lowess(x, y, n, f, nsteps, delta, ys, rw, res)
integer n, nsteps
double precision x(n), y(n), f, delta, ys(n), rw(n), res(n)
integer nright, i, j, iter, last, mid(2), ns, nleft
double precision cut, cmad, r, d1, d2
double precision c1, c9, alpha, denom, dabs
logical ok
if (n .ge. 2) goto 1
ys(1) = y(1)
return
c at least two, at most n points
1 ns = max(min(int(f*dble(n)), n), 2)
iter = 1
goto 3
2 iter = iter+1
3 if (iter .gt. nsteps+1) goto 22
c robustness iterations
nleft = 1
nright = ns
c index of prev estimated point
last = 0
c index of current point
i = 1
4 if (nright .ge. n) goto 5
c move nleft, nright to right if radius decreases

```

392
```

 d1 = x(i)-x(nleft)
 c if d1<=d2 with x(nright+1)==x(nright), lowest fixes
d2 = x(nright+1)-x(i)
if (d1 .le. d2) goto 5
c radius will not decrease by move right
nleft = nleft+1
nright = nright+1
goto 4
c fitted value at x(i)
5 call lowest(x, y, n, x(i), ys(i), nleft, nright, res, iter
+ .gt. 1, rw, ok)
if (.not. ok) ys(i) = y(i)
c all weights zero - copy over value (all rw==0)
if (last .ge. i-1) goto 9
denom = x(i)-x(last)
c skipped points -- interpolate
c non-zero - proof?
j = last+1
goto 7
6 j = j+1
7 if (j .ge. i) goto 8
alpha = (x(j)-x(last))/denom
ys(j) = alpha*ys(i)+(1.D0-alpha)*ys(last)
goto 6
continue
c last point actually estimated
9 last = i
c x coord of close points
cut = x(last)+delta
i = last+1
goto 11
lo ll
11 if (i .gt. n) goto 13
c find close points
if (x(i) .gt. cut) goto 13
c i one beyond last pt within cut
if (x(i) .ne. x(last)) goto 12
ys(i) = ys(last)
c exact match in x
last = i
12 continue
goto 10
c back 1 point so interpolation within delta, but always go forward
13 i = max(last+1, i-1)
14 if (last .lt. n) goto 4
c residuals
do 15 i = 1, n
res(i) = y(i)-ys(i)
continue
if (iter .gt. nsteps) goto 22
c compute robustness weights except last time
do 16 i = 1, n
rw(i) = dabs(res(i))
continue
call ssort(rw,n)
mid(1) = n/2+1
mid(2) = n-mid(1)+1

```
```

c 6 median abs resid
cmad = 3.DO*(rw(mid(1)) +rw(mid(2)))
c9 = .999999D0*cmad
c1 = .000001D0*cmad
do 21 i = 1, n
r = dabs(res(i))
if (r .gt. c1) goto 17
rw(i) = 1.D0
c near 0, avoid underflow
goto 20
if (r .le. c9) goto 18
rw(i) = 0.D0
c near 1, avoid underflow
goto 19
rw(i) = (1.D0-(r/cmad)**2.D0)**2.D0
continue
continue
continue
goto 2
22 return
end
subroutine lowest(x, y, n, xs, ys, nleft, nright, w, userw
+, rw, ok)
integer n
integer nleft, nright
double precision x(n), y(n), xs, ys, w(n), rw(n)
logical userw, ok
integer nrt, j
double precision dabs, a, b, c, h, r
double precision h1, dsqrt, h9, max, range
range = x(n)-x(1)
h = max(xs-x(nleft), x(nright)-xs)
h9 = .999999D0*h
h1 = .000001D0*h
c sum of weights
a = 0.D0
j = nleft
goto 2
1 j = j+1
2 if (j .gt. n) goto 7
c compute weights (pick up all ties on right)
w(j) = 0.D0
r = dabs(x(j)-xs)
if (r .gt. h9) goto 5
if (r .le. h1) goto 3
w(j) = (1.D0-(r/h)**3.D0)**3.D0
c small enough for non-zero weight
goto 4
3 w(j) = 1.D0
4 if (userw) w(j) = rw(j)*W(j)
a = a+w(j)
goto 6
5 if (x(j) .gt. xs) goto 7
c get out at first zero wt on right
6 continue

```
```

 goto 1
 c rightmost pt (may be greater than nright because of ties)
7 nrt = j-1
if (a .gt. 0.DO) goto 8
ok = .false.
goto 16
8 ok = .true.
c weighted least squares
do 9 j = nleft, nrt
c make sum of w(j) == 1
w(j) = w (j)/a
continue
if (h .le. O.DO) goto 14
a = 0.DO
c use linear fit
do 10 j = nleft, nrt
c weighted center of x values
a = a+w (j)*x(j)
1 0 ~ c o n t i n u e
b = xs-a
c = 0.DO
do 11 j = nleft, nrt
c}=c+w(j)*(x(j)-a)**
1 1 ~ c o n t i n u e
if (dsqrt(c) .le. .0000001D0*range) goto 13
b = b/c
c points are spread out enough to compute slope
do 12 j = nleft, nrt
w(j) = w(j)*(b*(x(j)-a)+1.D0)
continue
continue
ys = 0.DO
do 15 j = nleft, nrt
ys = ys+w(j)*y(j)
continue
15 return
end
subroutine ssort(a,n)
C Sorting by Hoare method, C.A.C.M. (1961) 321, modified by Singleton
C C.A.C.M. (1969) 185.
double precision a(n)
integer iu(16), il(16)
integer p
i =1
j = n
m=1
5 if (i.ge.j) goto 70
c first order a(i),a(j),a((i+j)/2), and use median to split the data
10 k=i
ij=(i+j)/2
t=a(ij)
if(a(i).le. t) goto 20
a(ij)=a(i)

```
```

 a(i)=t
 t=a(ij)
 20 l=j
 if(a(j).ge.t) goto 40
 a(ij)=a(j)
 a(j)=t
 t=a(ij)
 if(a(i).le.t) goto 40
 a(ij)=a(i)
 a(i)=t
 t=a(ij)
 goto 40
 a(l)=a(k)
 a(k)=tt
 l=l-1
 if(a(l) .gt. t) goto 40
 tt=a(l)
 c split the data into a(i to l) .lt. t, a(k to j) .gt. t
50 k=k+1
if(a(k).lt. t) goto 50
if(k .le. l) goto 30
p=m
m=m+1
c split the larger of the segments
if (l-i .le. j-k) goto 60
il(p)=i
iu(p)=l
i=k
goto 80
60 il(p)=k
iu(p)=j
j=l
goto 80
70 m=m-1
if(m .eq. 0) return
i =il(m)
j=iu(m)
c short sections are sorted by bubble sort
80 if (j-i .gt. 10) goto 10
if (i .eq. 1) goto 5
i=i-1
90 i=i+1
if(i .eq. j) goto 70
t=a(i+1)
if(a(i) .le. t) goto 90
k=i
100 a(k+1)=a(k)
k=k-1
if(t .lt. a(k)) goto 100
a(k+1)=t
goto 90
end

```
```


[^0]: ${ }^{1}$ Ratfor (short for Rational Fortran) is a programming language implemented as a pre-processor for Fortran 66. It provided modern control structures, unavailable in Fortran 66, to replace GOTOs and statement numbers (Wikipedia).

